In this paper, we propose a method to restore a single image affected by space-varying blur. The main novelty of our method is the use of recurring patterns as regularization during the restoration process. We postulate that restored patterns in the deblurred image should resemble other sharp details in the input image. To this purpose, we establish the correspondence of regions that are similar up to Gaussian blur. When two regions are in correspondence, one can perform deblurring by using the sharpest of the two as a proposal. Our solution consists of two steps: First, estimate correspondence of similar patches and their relative amount of blurring; second, restore the input image by imposing the similarity of such recurring patterns as a prior. Our approach has been successfully tested on both real and synthetic data.

Defocus Inpainting

GRISAN, ENRICO
2006

Abstract

In this paper, we propose a method to restore a single image affected by space-varying blur. The main novelty of our method is the use of recurring patterns as regularization during the restoration process. We postulate that restored patterns in the deblurred image should resemble other sharp details in the input image. To this purpose, we establish the correspondence of regions that are similar up to Gaussian blur. When two regions are in correspondence, one can perform deblurring by using the sharpest of the two as a proposal. Our solution consists of two steps: First, estimate correspondence of similar patches and their relative amount of blurring; second, restore the input image by imposing the similarity of such recurring patterns as a prior. Our approach has been successfully tested on both real and synthetic data.
2006
Computer Vision - ECCV 2006
9th European Conference on Computer Vision, ECCV 2006
9783540338321
9783540338345
File in questo prodotto:
File Dimensione Formato  
Favaro06_ECCV.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 2.55 MB
Formato Adobe PDF
2.55 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1556518
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact