The present work takes advantage of the multinucleon transfer mechanism between heavy reaction partners to study the population pattern of excited nuclear states in near spherical Zirconium isotopes following the 90Zr + 208Pb reaction at an energy closed to the Coulomb barrier. Both the projectile and the target are well known closed shell nuclei offering an optimum situation for clean experimental and theoretical conditions. Total kinetic energy loss (TKEL) distributions were compared with calculations performed with the GRAZING code. The ability to use the TKEL as a selection tool for the states at different excitation energies was shown

Nuclear Spectroscopy study of the isotopes produced via multinucleon transfer in the 90Zr+208Pb reaction

MONTAGNOLI, GIOVANNA;SCARLASSARA, FERNANDO;
2006

Abstract

The present work takes advantage of the multinucleon transfer mechanism between heavy reaction partners to study the population pattern of excited nuclear states in near spherical Zirconium isotopes following the 90Zr + 208Pb reaction at an energy closed to the Coulomb barrier. Both the projectile and the target are well known closed shell nuclei offering an optimum situation for clean experimental and theoretical conditions. Total kinetic energy loss (TKEL) distributions were compared with calculations performed with the GRAZING code. The ability to use the TKEL as a selection tool for the states at different excitation energies was shown
2006
FUSION 06. Reaction Mechanisms and Nuclear Structure at the Coulomb Barrier. San Servolo, Venezia, Italy, 19-23 March 2006
9780735403499
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1557841
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact