An algebraic technique which computes nonlinear, delay-free digital filter networks is applied to model the Dolby B in the discrete-time. The model preserves the topology of the analog system, and imports the characteristics of the nonlinear processing blocks which are responsible of the peculiar functioning of Dolby B. The resulting numerical system exhibits qualitatively similar dynamic behavior and performance -- full compliance with the Dolby B specifications would be achieved by deriving, from comprehensive data sheets of the system, accurate discrete-time models of the analog processing blocks. Results demonstrate that the computation converges if proper iterative methods are employed.

Exact discrete-time realization of a Dolby B encoding/decoding architecture

AVANZINI, FEDERICO;
2006

Abstract

An algebraic technique which computes nonlinear, delay-free digital filter networks is applied to model the Dolby B in the discrete-time. The model preserves the topology of the analog system, and imports the characteristics of the nonlinear processing blocks which are responsible of the peculiar functioning of Dolby B. The resulting numerical system exhibits qualitatively similar dynamic behavior and performance -- full compliance with the Dolby B specifications would be achieved by deriving, from comprehensive data sheets of the system, accurate discrete-time models of the analog processing blocks. Results demonstrate that the computation converges if proper iterative methods are employed.
2006
Proc. COST-G6 Conf. Digital Audio Effects (DAFx-06)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1558281
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact