A multi-compartmental model has been developed to describe dietary nitrogen (N) postprandial distribution and metabolism in humans. This paper details the entire process of model development, including the successive steps of its construction, parameter estimation and validation. The model was built using experimental data on dietary N kinetics in certain accessible pools of the intestine, blood and urine in healthy adults fed a [15N]-labeled protein meal. A 13-compartment, 21-parameter model was selected from candidate models of increasing order as being the minimum structure able to properly fit experimental data for all sampled compartments. Problems of theoretical identifiability and numerical identification of the model both constituted mathematical challenges that were difficult to solve because of the large number of unknown parameters and the few experimental data available. For this reason, new robust and reliable methods were applied, which enabled (i) a check that all model parameters could theoretically uniquely be determined and (ii) an estimation of their numerical values with satisfactory precision from the experimental data. Finally, model validation was completed by first verifying its a posteriori identifiability and then carrying out external validation.

Conceptual, methodological and computational issues concerning the compartmental modeling of a complex biological system: postprandial inter-organ metabolism of dietary nitrogen in humans.

SACCOMANI, MARIAPIA;
2006

Abstract

A multi-compartmental model has been developed to describe dietary nitrogen (N) postprandial distribution and metabolism in humans. This paper details the entire process of model development, including the successive steps of its construction, parameter estimation and validation. The model was built using experimental data on dietary N kinetics in certain accessible pools of the intestine, blood and urine in healthy adults fed a [15N]-labeled protein meal. A 13-compartment, 21-parameter model was selected from candidate models of increasing order as being the minimum structure able to properly fit experimental data for all sampled compartments. Problems of theoretical identifiability and numerical identification of the model both constituted mathematical challenges that were difficult to solve because of the large number of unknown parameters and the few experimental data available. For this reason, new robust and reliable methods were applied, which enabled (i) a check that all model parameters could theoretically uniquely be determined and (ii) an estimation of their numerical values with satisfactory precision from the experimental data. Finally, model validation was completed by first verifying its a posteriori identifiability and then carrying out external validation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1565037
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 17
social impact