Firstly, we present new sets of nodes for {\em polynomial interpolation on the square} that are asymptotically distributed w.r.t. the {\em Dubiner metrics}. Then, we shall deal with two particular families which show Lebesgue constants that numerically grow like $\log^2(n)$, with $n$ the degree of the interpolating polynomial. In the non-polynomial case with {\em radial basis functions} we also present two families of nearly-optimal interpolation points which can be determined {\it independently} of the radial function. One of these families can be conceptually described as a {\em Leja sequence} in the bivariate case.

Sets of Near-Optimal Points for Interpolation on the Square

De Marchi, S
2005

Abstract

Firstly, we present new sets of nodes for {\em polynomial interpolation on the square} that are asymptotically distributed w.r.t. the {\em Dubiner metrics}. Then, we shall deal with two particular families which show Lebesgue constants that numerically grow like $\log^2(n)$, with $n$ the degree of the interpolating polynomial. In the non-polynomial case with {\em radial basis functions} we also present two families of nearly-optimal interpolation points which can be determined {\it independently} of the radial function. One of these families can be conceptually described as a {\em Leja sequence} in the bivariate case.
2005
APPLIED AND INDUSTRIAL MATHEMATICS IN ITALY
SIMAI 2004
9812563687
File in questo prodotto:
File Dimensione Formato  
simai2004.pdf

accesso aperto

Tipologia: Preprint (AM - Author's Manuscript - submitted)
Licenza: Accesso libero
Dimensione 317.31 kB
Formato Adobe PDF
317.31 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/174149
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact