Neutron probes and high energy X-rays are sources of primary importance for the non-invasive characterization of materials related to cultural heritage. Their employment in the characterization of archaeological metal objects, combined with the recent instrumental and computational developments in the field of crystallographic texture analysis (CTA) from diffraction data proves to be a powerful tool for the interpretation of ancient metal working techniques. Diffraction based CTA, when performed using penetrating probes and adequate detector coverage of reciprocal space, for example using large detector arrays and/or ToF mode, allows simultaneous identification and quantification of crystalline phases, besides the microstructural and textural characterization of the object, and it can be effectively used as a totally non-invasive tool for metallographic analysis. Furthermore, the chemical composition of the object may also be obtained by the simultaneous detection of prompt gamma rays induced by neutron activation, or by the fluorescence signal from high energy X-rays, in order to obtain a large amount of complementary information in a single experiment. The specific application of neutron CTA to the characterization of the manufacturing processes of prehistoric copper axes is discussed in detail.

Crystallographic texture analysis of archaeological metals: interpretation of manufacturing techniques

ARTIOLI, GILBERTO
2007

Abstract

Neutron probes and high energy X-rays are sources of primary importance for the non-invasive characterization of materials related to cultural heritage. Their employment in the characterization of archaeological metal objects, combined with the recent instrumental and computational developments in the field of crystallographic texture analysis (CTA) from diffraction data proves to be a powerful tool for the interpretation of ancient metal working techniques. Diffraction based CTA, when performed using penetrating probes and adequate detector coverage of reciprocal space, for example using large detector arrays and/or ToF mode, allows simultaneous identification and quantification of crystalline phases, besides the microstructural and textural characterization of the object, and it can be effectively used as a totally non-invasive tool for metallographic analysis. Furthermore, the chemical composition of the object may also be obtained by the simultaneous detection of prompt gamma rays induced by neutron activation, or by the fluorescence signal from high energy X-rays, in order to obtain a large amount of complementary information in a single experiment. The specific application of neutron CTA to the characterization of the manufacturing processes of prehistoric copper axes is discussed in detail.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1776303
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 27
social impact