This work presents a low-dimensional physical model of the glottis in which a 2-D fold displacement representation allows to represent both the vertical and longitudinal displacements of the folds. We use a one-mass mechanical model, coupled to aerodynamic driving forces, and we use a delay line representation to account for the propagation of the displacement on the body-cover. The waveform is characterized by means of a set of acoustic parameters (open quotient, speed quotient, return quotient, fundamental frequency F0, etc.) that are used in the literature as typical voice source quantification parameters. The paper provides comparisons between values of these parameters computed for the proposed model and for analytical models (LF) of the flow.

Improved fold closure in mass-spring low-dimensional glottal models

AVANZINI, FEDERICO
2007

Abstract

This work presents a low-dimensional physical model of the glottis in which a 2-D fold displacement representation allows to represent both the vertical and longitudinal displacements of the folds. We use a one-mass mechanical model, coupled to aerodynamic driving forces, and we use a delay line representation to account for the propagation of the displacement on the body-cover. The waveform is characterized by means of a set of acoustic parameters (open quotient, speed quotient, return quotient, fundamental frequency F0, etc.) that are used in the literature as typical voice source quantification parameters. The paper provides comparisons between values of these parameters computed for the proposed model and for analytical models (LF) of the flow.
2007
Proc. Int. Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications (MAVEBA'07)
9788884536747
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1781113
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact