Over the past century, understanding the mechanisms underlying muscle fatigue and weakness has been the focus of much investigation. However, the dominant theory in the field, that lactic acidosis causes muscle fatigue, is unlikely to tell the whole story. Recently, dysregulation of sarcoplasmic reticulum (SR) Ca(2+) release has been associated with impaired muscle function induced by a wide range of stressors, from dystrophy to heart failure to muscle fatigue. Here, we address current understandings of the altered regulation of SR Ca(2+) release during chronic stress, focusing on the role of the SR Ca(2+) release channel known as the type 1 ryanodine receptor.

Stressed out: the skeletal muscle ryanodine receptor as a target of stress

MONGILLO, MARCO;
2008

Abstract

Over the past century, understanding the mechanisms underlying muscle fatigue and weakness has been the focus of much investigation. However, the dominant theory in the field, that lactic acidosis causes muscle fatigue, is unlikely to tell the whole story. Recently, dysregulation of sarcoplasmic reticulum (SR) Ca(2+) release has been associated with impaired muscle function induced by a wide range of stressors, from dystrophy to heart failure to muscle fatigue. Here, we address current understandings of the altered regulation of SR Ca(2+) release during chronic stress, focusing on the role of the SR Ca(2+) release channel known as the type 1 ryanodine receptor.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2267527
Citazioni
  • ???jsp.display-item.citation.pmc??? 49
  • Scopus 122
  • ???jsp.display-item.citation.isi??? 107
social impact