We establish L^p boundedness for a double analytic family of fractional integrals. Our proof is based on product-type kernels arguments. We prove in particular that the convolution kernel is a product kernel adapted to a polynomial curve in R^3.

Product structures and fractional integration along curves

CASARINO, VALENTINA;CIATTI, PAOLO;
2012

Abstract

We establish L^p boundedness for a double analytic family of fractional integrals. Our proof is based on product-type kernels arguments. We prove in particular that the convolution kernel is a product kernel adapted to a polynomial curve in R^3.
2012
Issue on Evolution Equations and Mathematical Models in the Applied Sciences
Evolution Equations And Mathematical models in the applied sciences
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2418473
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact