Extreme habitats are highly selective and can host only living organisms possessing specific adaptations to stressors. Among extreme habitats, space environment has particular charac-teristics of radiations, vacuum, microgravity and temperature, which induce rapid changes in living systems. Consequently, the response of multicellular complex organisms, able to colo-nize extreme environments, to space stresses can give very useful information on the ability to withstand a single stress or stress combinations. This knowledge on changes in living systems in space, with their similarity to the ageing processes, offers the opportunity to improve human life both on Earth and in space. Even though experimentation in space has often been carried out using unicellular organisms, multicellular organisms are very relevant in order to develop the appropriate countermeasures to avoid the risks imposed by environmental space in humans. The little attention received by multicellular organisms is probably due, other than to difficul-ties in the manipulation of biological materials in space, to the presence of only few organisms with the potential to tolerate environmental space stresses. Among them, tardigrades are small invertebrates representing an attractive animal model to study adaptive strategies for surviving extreme environments, including space environment. Tardigrades are little known microscopic aquatic animals (250-800 m in body length) distributed in different environments (from the deep sea to high mountains and deserts all over the world), and frequently inhabiting very unstable and unpredictable habitats (e.g. interstices of mosses, lichens, leaf litter, freshwater ponds, cryoconite holes). Their ability to live in the extreme environments is related to a wide variety of their life histories and adaptive strategies. A widespread and crucial strategy is cryptobiosis, a form of quiescence. It includes strategies such as anhydrobiosis and cryobiosis, characterized by a complete or almost complete metabolic standstill. The ability of tardigrades to colonize terrestrial habitats is linked to their well known ability to enter anhydrobiosis when their habi-tat desiccates. Tardigrades survive dehydration by entering a highly stable state of suspended animation due to complete desiccation (¿ 95Results on tardigrades open a window on the fu-ture perspective in astrobiology and in their applications. The discovery and identification of metabolites naturally synthesized by tardigrades to perform a remarkable protection against the damages to cellular components and DNA due to desiccation, radiation, microgravity and oxidation stresses, will be used to define the countermeasures to protect sensitive organisms, including humans, not naturally able to withstand extreme stresses under space conditions, for the future long-term explorations of our solar system, including Mars.

Tardigrades living in extreme environments have naturally selected prerequisites useful to space conquer

GALLETTA, GIUSEPPE;
2010

Abstract

Extreme habitats are highly selective and can host only living organisms possessing specific adaptations to stressors. Among extreme habitats, space environment has particular charac-teristics of radiations, vacuum, microgravity and temperature, which induce rapid changes in living systems. Consequently, the response of multicellular complex organisms, able to colo-nize extreme environments, to space stresses can give very useful information on the ability to withstand a single stress or stress combinations. This knowledge on changes in living systems in space, with their similarity to the ageing processes, offers the opportunity to improve human life both on Earth and in space. Even though experimentation in space has often been carried out using unicellular organisms, multicellular organisms are very relevant in order to develop the appropriate countermeasures to avoid the risks imposed by environmental space in humans. The little attention received by multicellular organisms is probably due, other than to difficul-ties in the manipulation of biological materials in space, to the presence of only few organisms with the potential to tolerate environmental space stresses. Among them, tardigrades are small invertebrates representing an attractive animal model to study adaptive strategies for surviving extreme environments, including space environment. Tardigrades are little known microscopic aquatic animals (250-800 m in body length) distributed in different environments (from the deep sea to high mountains and deserts all over the world), and frequently inhabiting very unstable and unpredictable habitats (e.g. interstices of mosses, lichens, leaf litter, freshwater ponds, cryoconite holes). Their ability to live in the extreme environments is related to a wide variety of their life histories and adaptive strategies. A widespread and crucial strategy is cryptobiosis, a form of quiescence. It includes strategies such as anhydrobiosis and cryobiosis, characterized by a complete or almost complete metabolic standstill. The ability of tardigrades to colonize terrestrial habitats is linked to their well known ability to enter anhydrobiosis when their habi-tat desiccates. Tardigrades survive dehydration by entering a highly stable state of suspended animation due to complete desiccation (¿ 95Results on tardigrades open a window on the fu-ture perspective in astrobiology and in their applications. The discovery and identification of metabolites naturally synthesized by tardigrades to perform a remarkable protection against the damages to cellular components and DNA due to desiccation, radiation, microgravity and oxidation stresses, will be used to define the countermeasures to protect sensitive organisms, including humans, not naturally able to withstand extreme stresses under space conditions, for the future long-term explorations of our solar system, including Mars.
2010
38th COSPAR Scientific Assembly
38th COSPAR Scientific Assembly
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2419518
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact