Abstract - We discuss specific, recent advances in the analysis of an experiment to test the Equivalence Principle (EP) in free fall. A differential accelerometer detector with two proof masses of different materials free falls inside an evacuated capsule previously released from a stratospheric balloon. The detector spins slowly about its horizontal axis during the fall. An EP violation signal (if present) will manifest itself at the rotational frequency of the detector. The detector operates in a quiet environment as it slowly moves with respect to the co-moving capsule. There are, however, gravitational and dynamical noise contributions that need to be evaluated in order to define key requirements for this experiment. Specifically, higher-order mass moments of the capsule contribute errors to the differential acceleration output with components at the spin frequency which need to be minimized. The dynamics of the free falling detector (in its present design) has been simulated in order to estimate the tolerable errors at release which, in turn, define the release mechanism requirements. Moreover, the study of the higher-order mass moments for a worst-case position of the detector package relative to the cryostat has led to the definition of requirements on the shape and size of the proof masses.

Testing the Equivalence Principle in an Einstein Elevator: detector Dynamics and Gravity Perturbations

LORENZINI, ENRICO;PARZIANELLO, GIORGIO;
2003

Abstract

Abstract - We discuss specific, recent advances in the analysis of an experiment to test the Equivalence Principle (EP) in free fall. A differential accelerometer detector with two proof masses of different materials free falls inside an evacuated capsule previously released from a stratospheric balloon. The detector spins slowly about its horizontal axis during the fall. An EP violation signal (if present) will manifest itself at the rotational frequency of the detector. The detector operates in a quiet environment as it slowly moves with respect to the co-moving capsule. There are, however, gravitational and dynamical noise contributions that need to be evaluated in order to define key requirements for this experiment. Specifically, higher-order mass moments of the capsule contribute errors to the differential acceleration output with components at the spin frequency which need to be minimized. The dynamics of the free falling detector (in its present design) has been simulated in order to estimate the tolerable errors at release which, in turn, define the release mechanism requirements. Moreover, the study of the higher-order mass moments for a worst-case position of the detector package relative to the cryostat has led to the definition of requirements on the shape and size of the proof masses.
2003
Proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in Space; 1-21; (JPL-Pub-04-13)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2429876
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact