This paper reports a theory for the dielectric relaxation of dimeric mesogenic molecules in a nematic liquid crystal phase. Liquid crystal dimers consist of two mesogenic groups linked by a flexible chain. Recent experimental studies [D. A. Dunmur, G. R. Luckhurst, M. R. de la Fuente, S. Diez, and M. A. Perez Jubindo, J. Chem. Phys. 115, 8681 (2001)] of the dielectric properties of polar liquid crystal dimers have found unexpected results for both the static (low frequency) and variable frequency dielectric response of these materials. The theory developed in this paper provides a quantitative model with which to understand the observed experimental results. The mean-square dipole moments of alpha,omega-bis[(4-cyanobiphenyl-4'-yl]alkanes in a nematic phase have been calculated using both the rotational isomeric state model and a full torsional potential for the carbon-carbon bonds of the flexible chain. The orienting effect of the nematic phase is taken into account by a parametrized potential of mean torque acting on the mesogenic groups and the segments in the flexible chain. Results of calculations using the full torsional potential are in excellent agreement with experimental results for comparable systems. The probability density p(eq)(beta(A),beta(B)) for the orientation of the mesogenic groups (A,B) along the nematic director is also calculated. The resultant potential of mean torque is a surface characterized by four deep energy wells or sites equivalent to alignment of the terminal groups A and B approximately parallel and antiparallel to the director; of course, the reversal of the director leads to equivalent sites. This potential energy surface provides the basis for a kinetic model of dielectric relaxation in nematic dimers. Solution of the Fokker-Planck equation corresponding to this four-site model gives the time dependence of the site populations, and hence the time-correlation functions for the total dipole moment along the director. In this model the end-over-end rotation of the molecule, corresponding to simulataneous reversal of both mesogenic groups, is excluded because the activation energy is too large. Results are presented for a number of cases, in which a dipole is located on one or both of the mesogenic groups, and additionally where the groups differ in size. For the latter, under particular conditions, the correlation function exhibits a biexponential decay, which corresponds to two low frequency absorptions in the dielectric spectrum. This is exactly what has been observed for nonsymmetric nematic dimers having different groups terminating a flexible chain. Experimental results over a range of temperature for the nonsymmetric dimer alpha-[(4-cyanobiphenyl)-4'-yloxy]-omega-(4-decylanilinebenzylidene-4'-oxy)nonane can be fitted precisely to the theory, which provides new insight into the orientational and conformational dynamics of molecules in ordered liquid crystalline phases.

Molecular theory of dielectric relaxation in nematic dimers

FERRARINI, ALBERTA;MORO, GIORGIO;
2004

Abstract

This paper reports a theory for the dielectric relaxation of dimeric mesogenic molecules in a nematic liquid crystal phase. Liquid crystal dimers consist of two mesogenic groups linked by a flexible chain. Recent experimental studies [D. A. Dunmur, G. R. Luckhurst, M. R. de la Fuente, S. Diez, and M. A. Perez Jubindo, J. Chem. Phys. 115, 8681 (2001)] of the dielectric properties of polar liquid crystal dimers have found unexpected results for both the static (low frequency) and variable frequency dielectric response of these materials. The theory developed in this paper provides a quantitative model with which to understand the observed experimental results. The mean-square dipole moments of alpha,omega-bis[(4-cyanobiphenyl-4'-yl]alkanes in a nematic phase have been calculated using both the rotational isomeric state model and a full torsional potential for the carbon-carbon bonds of the flexible chain. The orienting effect of the nematic phase is taken into account by a parametrized potential of mean torque acting on the mesogenic groups and the segments in the flexible chain. Results of calculations using the full torsional potential are in excellent agreement with experimental results for comparable systems. The probability density p(eq)(beta(A),beta(B)) for the orientation of the mesogenic groups (A,B) along the nematic director is also calculated. The resultant potential of mean torque is a surface characterized by four deep energy wells or sites equivalent to alignment of the terminal groups A and B approximately parallel and antiparallel to the director; of course, the reversal of the director leads to equivalent sites. This potential energy surface provides the basis for a kinetic model of dielectric relaxation in nematic dimers. Solution of the Fokker-Planck equation corresponding to this four-site model gives the time dependence of the site populations, and hence the time-correlation functions for the total dipole moment along the director. In this model the end-over-end rotation of the molecule, corresponding to simulataneous reversal of both mesogenic groups, is excluded because the activation energy is too large. Results are presented for a number of cases, in which a dipole is located on one or both of the mesogenic groups, and additionally where the groups differ in size. For the latter, under particular conditions, the correlation function exhibits a biexponential decay, which corresponds to two low frequency absorptions in the dielectric spectrum. This is exactly what has been observed for nonsymmetric nematic dimers having different groups terminating a flexible chain. Experimental results over a range of temperature for the nonsymmetric dimer alpha-[(4-cyanobiphenyl)-4'-yloxy]-omega-(4-decylanilinebenzylidene-4'-oxy)nonane can be fitted precisely to the theory, which provides new insight into the orientational and conformational dynamics of molecules in ordered liquid crystalline phases.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2432132
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 56
social impact