Type 1 diabetes mellitus is a disease affecting millions of people worldwide and causing the expenditure of millions of euros every year for health care. One of the most promising therapies derives from the use of an artificial pancreas, based on a control system able to maintain the normoglycaemia in the subject affected by diabetes. A dynamic simulation model of the glucose-insulin system can be useful in several circumstances for diabetes care, including testing of glucose sensors, insulin infusion algorithms, and decision support systems for diabetes. This paper considers the problem of the identification of single individual parameters in detailed dynamic models of glucose homeostasis. Optimal model-based design of experiment techniques are used to design a set of clinical tests that allow the model parameters to be estimated in a statistically sound way, while meeting constraints related to safety of the subject and ease of implementation. The model with the estimated set of parameters represents a specific subject and can thus be used for customized diabetes care solutions. Simulated results demonstrate how such an approach can improve the effectiveness of clinical tests and serve as a tool to devise safer and more efficient clinical protocols, thus providing a contribution to the development of an artificial pancreas.

Optimal Design of Clinical Tests for the Identification of Physiological Models of Type 1 Diabetes Mellitus

GALVANIN, FEDERICO;BAROLO, MASSIMILIANO;BEZZO, FABRIZIO
2009

Abstract

Type 1 diabetes mellitus is a disease affecting millions of people worldwide and causing the expenditure of millions of euros every year for health care. One of the most promising therapies derives from the use of an artificial pancreas, based on a control system able to maintain the normoglycaemia in the subject affected by diabetes. A dynamic simulation model of the glucose-insulin system can be useful in several circumstances for diabetes care, including testing of glucose sensors, insulin infusion algorithms, and decision support systems for diabetes. This paper considers the problem of the identification of single individual parameters in detailed dynamic models of glucose homeostasis. Optimal model-based design of experiment techniques are used to design a set of clinical tests that allow the model parameters to be estimated in a statistically sound way, while meeting constraints related to safety of the subject and ease of implementation. The model with the estimated set of parameters represents a specific subject and can thus be used for customized diabetes care solutions. Simulated results demonstrate how such an approach can improve the effectiveness of clinical tests and serve as a tool to devise safer and more efficient clinical protocols, thus providing a contribution to the development of an artificial pancreas.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2435716
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 28
social impact