The increasing interest for renewable energy sources like those based on photovoltaic panels and fuel-cells have driven the power electronics community toward the study and development of high step-up DC-DC converters, able to efficiently interface the low voltage side of such energy sources with the high-voltage dc link side of the grid connected inverter. Between the different investigated topologies, those based on the combination of a boost section and a flyback one are quite interesting, thanks to the possibility to boost the output voltage while keeping the switch voltage stress at a reasonable level. However, the analysis reported in literature always neglect the effect of parasitic components that strongly modify the converter behavior. In this paper, the analysis of the integrated boost-flyback converter with voltage multiplier is presented that includes the effect of the parasitic components. It is shown that a resonance occurs that helps to increase the converter's voltage gain. Experimental results taken from a 300 W rated prototype are included, showing a good agreement with the theoretical expectations.

Effect of parasitic components in the Integrated Boost-flyback high step-up converter

SPIAZZI, GIORGIO;MATTAVELLI, PAOLO;
2009

Abstract

The increasing interest for renewable energy sources like those based on photovoltaic panels and fuel-cells have driven the power electronics community toward the study and development of high step-up DC-DC converters, able to efficiently interface the low voltage side of such energy sources with the high-voltage dc link side of the grid connected inverter. Between the different investigated topologies, those based on the combination of a boost section and a flyback one are quite interesting, thanks to the possibility to boost the output voltage while keeping the switch voltage stress at a reasonable level. However, the analysis reported in literature always neglect the effect of parasitic components that strongly modify the converter behavior. In this paper, the analysis of the integrated boost-flyback converter with voltage multiplier is presented that includes the effect of the parasitic components. It is shown that a resonance occurs that helps to increase the converter's voltage gain. Experimental results taken from a 300 W rated prototype are included, showing a good agreement with the theoretical expectations.
2009
IEEE International Conference on Industrial Electronics, Control and Instrumentation, IECON'09
IEEE International Conference on Industrial Electronics, Control and Instrumentation, IECON'09
9781424446483
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2437507
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact