Although phylogenetically related to vertebrates, invertebrate chordate tunicates possess an open circulatory system, with blood flowing in lacunae among organs. However, the colonial circulatory system (CCS) of the ascidian Botryllus schlosseri runs in the common tunic and forms an anastomized network of vessels, defined by simple epithelium, connected to the open circulatory system of the zooids. The CCS originates from epidermal evagination, grows, and increases its network accompanying colony propagation. New vessels are formed by means of mechanisms of tubular sprouting which, in their morphogenesis and molecular regulation, are very similar to those occurring in other metazoans, particularly during vertebrate angiogenesis. From the apex of new vessels, epithelial cells detach and migrate into the tunic, while exploring filopodia extend toward the tunic and possibly guide vessel growth. Immunohistology showed that growth factors fibroblast growth factor-2 and vascular endothelial growth factor and the receptor vascular endothelial growth factor receptor-1 participate in sprouting, associated with cell proliferation. As in vertebrates, these factors may regulate cell migration, proliferation, sprouting, and tube formation. Our data indicate that similar, conserved signals were co-opted in the sprouting processes of two nonhomologous circulatory systems, that of ascidian CCS, and vertebrate circulatory systems, by recruitment of the same signaling pathway.

Tubular sprouting as a mode of vascular formation in a colonial Ascidian (Tunicata)

GASPARINI, FABIO;MANNI, LUCIA;BURIGHEL, PAOLO;ZANIOLO, GIOVANNA
2007

Abstract

Although phylogenetically related to vertebrates, invertebrate chordate tunicates possess an open circulatory system, with blood flowing in lacunae among organs. However, the colonial circulatory system (CCS) of the ascidian Botryllus schlosseri runs in the common tunic and forms an anastomized network of vessels, defined by simple epithelium, connected to the open circulatory system of the zooids. The CCS originates from epidermal evagination, grows, and increases its network accompanying colony propagation. New vessels are formed by means of mechanisms of tubular sprouting which, in their morphogenesis and molecular regulation, are very similar to those occurring in other metazoans, particularly during vertebrate angiogenesis. From the apex of new vessels, epithelial cells detach and migrate into the tunic, while exploring filopodia extend toward the tunic and possibly guide vessel growth. Immunohistology showed that growth factors fibroblast growth factor-2 and vascular endothelial growth factor and the receptor vascular endothelial growth factor receptor-1 participate in sprouting, associated with cell proliferation. As in vertebrates, these factors may regulate cell migration, proliferation, sprouting, and tube formation. Our data indicate that similar, conserved signals were co-opted in the sprouting processes of two nonhomologous circulatory systems, that of ascidian CCS, and vertebrate circulatory systems, by recruitment of the same signaling pathway.
2007
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2439240
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 28
social impact