We present a static parallel implementation of themultifrontal method to solve unsymmetric sparse linear systems on distributed-memory architectures. We target Finite Element (FE) applications where numerical pivoting can be avoided, since an implicit minimum-degree ordering based on the FE mesh topology suffices to achieve numerical stability. Our strategy is static in the sense that work distribution and communication patterns are determined in a preprocessing phase preceding the actual numerical computation. To balance the load among the processors, we devise a simple model-driven partitioning strategy to precompute a high-quality balancing for a large family of structured meshes. The resulting approach is proved to be considerably more efficient than the strategies implemented byMUMPS and SuperLU DIST, two state-of-the-art parallel multifrontal solvers.

A Static Parallel Multifrontal Solver for Finite Element Meshes

BERTOLDO, ALBERTO;PUCCI, GEPPINO
2006

Abstract

We present a static parallel implementation of themultifrontal method to solve unsymmetric sparse linear systems on distributed-memory architectures. We target Finite Element (FE) applications where numerical pivoting can be avoided, since an implicit minimum-degree ordering based on the FE mesh topology suffices to achieve numerical stability. Our strategy is static in the sense that work distribution and communication patterns are determined in a preprocessing phase preceding the actual numerical computation. To balance the load among the processors, we devise a simple model-driven partitioning strategy to precompute a high-quality balancing for a large family of structured meshes. The resulting approach is proved to be considerably more efficient than the strategies implemented byMUMPS and SuperLU DIST, two state-of-the-art parallel multifrontal solvers.
2006
Proc. of the 4th International Symposium on Parallel and Distributed Processing and Applications (ISPA'06)
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2442128
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact