This work is focused on the development of an innovative synthetic route to SiO2-sandwiched Au nanoparticle arrays. The adopted strategy consists of: (i) the radio frequency sputtering of gold on thermally oxidized Si(100) and silica substrates from Ar plasmas; (ii) the plasma enhanced chemical vapor deposition of a SiO2 overlayer using tetramethoxysilane as precursor from Ar–O2 plasmas. A common feature of both preparative stages is the use of very soft processing conditions at temperatures close to room temperature, in order to tailor the Au nanoparticle morphology and to preserve it upon SiO2 coverage. In situ monitoring of gold deposition was accomplished by means of laser reflection interferometry. Valuable information on the system morphology before and after SiO2 coverage was provided by field emission-scanning electron microscopy for samples with different Au content. Additional important information on the system chemical composition, structure and optical response was gained by the combined use of x-ray photoelectron spectroscopy, glancing incidence x-ray diffraction and UV–visible absorption spectroscopy. The results obtained highlight the formation of high-purity SiO2/Au/SiO2-sandwiched stacks, in which the gold content and distribution, as well as the nanoparticle morphology, could be tailored by the sole variation of the sputtering time, without any further ex situ treatment.

Silica-sandwiched Au nanoparticle arrays by a soft PE-CVD/RF-sputtering approach

GASPAROTTO, ALBERTO;MACCATO, CHIARA;TONDELLO, EUGENIO
2008

Abstract

This work is focused on the development of an innovative synthetic route to SiO2-sandwiched Au nanoparticle arrays. The adopted strategy consists of: (i) the radio frequency sputtering of gold on thermally oxidized Si(100) and silica substrates from Ar plasmas; (ii) the plasma enhanced chemical vapor deposition of a SiO2 overlayer using tetramethoxysilane as precursor from Ar–O2 plasmas. A common feature of both preparative stages is the use of very soft processing conditions at temperatures close to room temperature, in order to tailor the Au nanoparticle morphology and to preserve it upon SiO2 coverage. In situ monitoring of gold deposition was accomplished by means of laser reflection interferometry. Valuable information on the system morphology before and after SiO2 coverage was provided by field emission-scanning electron microscopy for samples with different Au content. Additional important information on the system chemical composition, structure and optical response was gained by the combined use of x-ray photoelectron spectroscopy, glancing incidence x-ray diffraction and UV–visible absorption spectroscopy. The results obtained highlight the formation of high-purity SiO2/Au/SiO2-sandwiched stacks, in which the gold content and distribution, as well as the nanoparticle morphology, could be tailored by the sole variation of the sputtering time, without any further ex situ treatment.
2008
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2442989
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact