The results of a theoretical and experimental research project on the use of an innovative technique for strengthening concrete beams are presented. A spacer element is inserted between the tension side of a beam and the composite material to increase its lever arm and to enhance the over all stiffness of the strengthened beam. The main aim of this exploratory project was to increase the ultimate failure load of strengthened beam specimens, whilst guaranteeing acceptable over all deflections at the serviceability limit states. This resulted into a significant reduction in the amount of FPR required and in a better utilization of the materials employed. A preliminary theoretical study was carried out to investigate the effect of Young's modulus, failure strain, and thickness of the element to be used as a spacer in order to determine the best possible candidate material. Three tests on 2.5-m-long beams were carried out, and different anchorage techniques were used to try and prevent the debonding of the strengthening system. The results from this pilot study are very promising, as the strengthening system ensures an adequate initial stiffness along with an improved ultimate flexural capacity.

Strengthening of RC beams with an innovative timber-FRP composite system

MAZZON, NICOLA;VALLUZZI, MARIA ROSA
2008

Abstract

The results of a theoretical and experimental research project on the use of an innovative technique for strengthening concrete beams are presented. A spacer element is inserted between the tension side of a beam and the composite material to increase its lever arm and to enhance the over all stiffness of the strengthened beam. The main aim of this exploratory project was to increase the ultimate failure load of strengthened beam specimens, whilst guaranteeing acceptable over all deflections at the serviceability limit states. This resulted into a significant reduction in the amount of FPR required and in a better utilization of the materials employed. A preliminary theoretical study was carried out to investigate the effect of Young's modulus, failure strain, and thickness of the element to be used as a spacer in order to determine the best possible candidate material. Three tests on 2.5-m-long beams were carried out, and different anchorage techniques were used to try and prevent the debonding of the strengthening system. The results from this pilot study are very promising, as the strengthening system ensures an adequate initial stiffness along with an improved ultimate flexural capacity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2444162
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact