Gastric inhibitory polypeptide (GIP) is a 42-amino acid peptide, belonging to the VIP-secretin-glucagon superfamily, some members of this group are able to regulate adrenocortical function. GIP-receptor mRNA has been detected in the rat adrenal cortex, but investigations on the effect of GIP on steroid-hormone secretion in this species are lacking. Hence, we have investigated the distribution of GIP binding sites in the rat adrenal gland and the effect of their activation in vivo and in vitro. Autoradiography evidenced abundant [125I]GIP binding sites exclusively in the inner adrenocortical layers, and the computer-assisted densitometric analysis of autoradiograms demonstrated that binding was displaced by cold GIP, but not by either ACTH or the selective ACTH-receptor antagonist corticotropin-inhibiting peptide (CIP). The intraperitoneal (IP) injection of GIP dose-dependently raised corticosterone, but not aldosterone plasma concentration: the maximal effective dose (10 nmol/rat) elicited a twofold increase. GIP did not affect aldosterone and cyclic-AMP release by dispersed zona glomerulosa cells. In contrast, GIP enhanced basal corticosterone secretion and cyclic-AMP release by dispersed inner adrenocortical cells in a concentration-dependent manner, and the maximal effective concentration (10(-7) M) evoked 1.5- and 2.4-fold rises in corticosterone and cyclic-AMP production, respectively. GIP (10(-7) M) did not display any additive or potentiating effect on corticosterone and cyclic-AMP responses to submaximal or maximal effective concentrations of ACTH. The corticosterone secretagogue action of 10(-7) M GIP was abolished by the protein kinase A (PKA) inhibitor H-89 (10(-5)M), and unaffected by CIP (10(-6)M). Collectively, these findings indicate that GIP exerts a moderate but statistically significant stimulatory effect on basal glucocorticoid secretion in rats, acting through specific receptors coupled with the adenylate cyclase/PKA-dependent signaling pathway.

Gastric inhibitory polypeptide stimulates glucocorticoid secretion in rats, acting through specific receptors coupled with the adenylate cyclase-dependent signaling pathway.

REBUFFAT, PIERA;TORTORELLA, CINZIA;
1999

Abstract

Gastric inhibitory polypeptide (GIP) is a 42-amino acid peptide, belonging to the VIP-secretin-glucagon superfamily, some members of this group are able to regulate adrenocortical function. GIP-receptor mRNA has been detected in the rat adrenal cortex, but investigations on the effect of GIP on steroid-hormone secretion in this species are lacking. Hence, we have investigated the distribution of GIP binding sites in the rat adrenal gland and the effect of their activation in vivo and in vitro. Autoradiography evidenced abundant [125I]GIP binding sites exclusively in the inner adrenocortical layers, and the computer-assisted densitometric analysis of autoradiograms demonstrated that binding was displaced by cold GIP, but not by either ACTH or the selective ACTH-receptor antagonist corticotropin-inhibiting peptide (CIP). The intraperitoneal (IP) injection of GIP dose-dependently raised corticosterone, but not aldosterone plasma concentration: the maximal effective dose (10 nmol/rat) elicited a twofold increase. GIP did not affect aldosterone and cyclic-AMP release by dispersed zona glomerulosa cells. In contrast, GIP enhanced basal corticosterone secretion and cyclic-AMP release by dispersed inner adrenocortical cells in a concentration-dependent manner, and the maximal effective concentration (10(-7) M) evoked 1.5- and 2.4-fold rises in corticosterone and cyclic-AMP production, respectively. GIP (10(-7) M) did not display any additive or potentiating effect on corticosterone and cyclic-AMP responses to submaximal or maximal effective concentrations of ACTH. The corticosterone secretagogue action of 10(-7) M GIP was abolished by the protein kinase A (PKA) inhibitor H-89 (10(-5)M), and unaffected by CIP (10(-6)M). Collectively, these findings indicate that GIP exerts a moderate but statistically significant stimulatory effect on basal glucocorticoid secretion in rats, acting through specific receptors coupled with the adenylate cyclase/PKA-dependent signaling pathway.
1999
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2456534
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 23
social impact