We show here that limited proteolysis can probe the structural and dynamic differences between the holo and apo form of horse myoglobin (Mb). Initial nicking of the polypeptide chain of apoMb (153 amino acid residues, no disulfide bonds) by several proteases (subtilisin, thermolysin, chymotrypsin and trypsin) occurs at the level of chain segment 89-96. In contrast, holoMb is resistant to proteolytic digestion when reacted under identical experimental conditions. Such selective proteolysis implies that the F-helix of native holoMb (residues 82 to 97) is disordered in apoMb, thus enabling binding and adaptation of this chain segment at the active site of the proteolytic enzymes for an efficient peptide bond fission. That essentially only the F-helix in apoMb is largely disrupted was earlier inferred from spectroscopic measurements and molecular dynamics simulations. The results of this study provide direct experimental evidence for this and emphasize therefore that limited proteolysis is a useful and reliable method for probing structure and dynamics of proteins, complementing other experimental techniques such as NMR and X-ray crystallography.

Probing the Conformational State of Apomyoglobin by Limited Proteolysis

FONTANA, ANGELO;POLVERINO DE LAURETO, PATRIZIA;DE FILIPPIS, VINCENZO;
1997

Abstract

We show here that limited proteolysis can probe the structural and dynamic differences between the holo and apo form of horse myoglobin (Mb). Initial nicking of the polypeptide chain of apoMb (153 amino acid residues, no disulfide bonds) by several proteases (subtilisin, thermolysin, chymotrypsin and trypsin) occurs at the level of chain segment 89-96. In contrast, holoMb is resistant to proteolytic digestion when reacted under identical experimental conditions. Such selective proteolysis implies that the F-helix of native holoMb (residues 82 to 97) is disordered in apoMb, thus enabling binding and adaptation of this chain segment at the active site of the proteolytic enzymes for an efficient peptide bond fission. That essentially only the F-helix in apoMb is largely disrupted was earlier inferred from spectroscopic measurements and molecular dynamics simulations. The results of this study provide direct experimental evidence for this and emphasize therefore that limited proteolysis is a useful and reliable method for probing structure and dynamics of proteins, complementing other experimental techniques such as NMR and X-ray crystallography.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2459250
Citazioni
  • ???jsp.display-item.citation.pmc??? 42
  • Scopus 180
  • ???jsp.display-item.citation.isi??? 179
social impact