In the Austroalpine Mont Mary nappe (Italian Western Alps) discrete zones of mylonites–ultramylonites developed from coarse-grained, upper amphibolite facies metapelites of pre-Alpine age. The syn–mylonitic mineral assemblage is quartz–biotite–muscovite–plagioclase–garnet–sillimanite–ilmenite–graphite, and formed via the model hydration reaction: Grt1+Kfs+H2O=Bt2+Ilm2+Qtz+Ms± Sil .Grain-size reduction of about three orders of magnitude was accompanied by extensive recrystallization of all minerals except sillimanite, and by compositional changes of garnet and biotite. Deformation took place at temperatures of 510–580 °C under low-pressure conditions (0.25–0.45 GPa) and corresponds to the latest stages of pre-Alpine metamorphic evolution. The pre-Alpine mylonitization conditions were close to the brittle-ductile transition, as indicated by syn–mylonitic generation of pseudotachylytes and high differential stress inferred from quartz grain-size piezometry. The brittle-ductile behaviour at a relatively high temperature, and the absence of annealing textures in quartz aggregates, are suggestive of water-deficient conditions during mylonitization. These were accomplished through progressive consumption of water by syn–kinematic hydration reaction and by adsorption onto the greatly increased grain boundary area resulting from dynamic recrystallization.

Ductile-brittle transition in pre-Alpine amphibolite facies mylonites during evolution from water-present to water-deficient conditions (Moot Mary nappe, Italian Western Alps)

PENNACCHIONI, GIORGIO;CESARE, BERNARDO
1997

Abstract

In the Austroalpine Mont Mary nappe (Italian Western Alps) discrete zones of mylonites–ultramylonites developed from coarse-grained, upper amphibolite facies metapelites of pre-Alpine age. The syn–mylonitic mineral assemblage is quartz–biotite–muscovite–plagioclase–garnet–sillimanite–ilmenite–graphite, and formed via the model hydration reaction: Grt1+Kfs+H2O=Bt2+Ilm2+Qtz+Ms± Sil .Grain-size reduction of about three orders of magnitude was accompanied by extensive recrystallization of all minerals except sillimanite, and by compositional changes of garnet and biotite. Deformation took place at temperatures of 510–580 °C under low-pressure conditions (0.25–0.45 GPa) and corresponds to the latest stages of pre-Alpine metamorphic evolution. The pre-Alpine mylonitization conditions were close to the brittle-ductile transition, as indicated by syn–mylonitic generation of pseudotachylytes and high differential stress inferred from quartz grain-size piezometry. The brittle-ductile behaviour at a relatively high temperature, and the absence of annealing textures in quartz aggregates, are suggestive of water-deficient conditions during mylonitization. These were accomplished through progressive consumption of water by syn–kinematic hydration reaction and by adsorption onto the greatly increased grain boundary area resulting from dynamic recrystallization.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2461998
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 73
social impact