Although the yeast genome does not encode bona fide protein tyrosine kinases, tyrosine-phosphorylated proteins are numerous, suggesting that besides dual-specificity kinases, some Ser/Thr kinases are also committed to tyrosine phosphorylation in Saccharomyces cerevisiae. Here we show that blockage of the highly pleiotropic Ser/Thr kinase CK2 with a specific inhibitor synergizes with the overexpression of Stp1 low-molecular-weight protein tyrosine phosphatase (PTP) in inducing a severe growth-defective phenotype, consistent with a prominent role for CK2 in tyrosine phosphorylation in yeast. We also present in vivo evidence that immunophilin Fpr3, the only tyrosine-phosphorylated CK2 substrate recognized so far, interacts with and is dephosphorylated by Spt1. These data disclose a functional correlation between CK2 and LMW-PTPs, and suggest that reversible phosphorylation of Fpr3 plays a role in the regulation of growth rate and budding in S. cerevisiae.

Expression of the Stp1 LMW-PTP and inhibition of protein CK2 display a cooperative effect on immunophilin Fpr3 tyrosine phosphorylation and Saccharomyces cerevisiae growth

SARNO, STEFANIA;PINNA, LORENZO;
2004

Abstract

Although the yeast genome does not encode bona fide protein tyrosine kinases, tyrosine-phosphorylated proteins are numerous, suggesting that besides dual-specificity kinases, some Ser/Thr kinases are also committed to tyrosine phosphorylation in Saccharomyces cerevisiae. Here we show that blockage of the highly pleiotropic Ser/Thr kinase CK2 with a specific inhibitor synergizes with the overexpression of Stp1 low-molecular-weight protein tyrosine phosphatase (PTP) in inducing a severe growth-defective phenotype, consistent with a prominent role for CK2 in tyrosine phosphorylation in yeast. We also present in vivo evidence that immunophilin Fpr3, the only tyrosine-phosphorylated CK2 substrate recognized so far, interacts with and is dephosphorylated by Spt1. These data disclose a functional correlation between CK2 and LMW-PTPs, and suggest that reversible phosphorylation of Fpr3 plays a role in the regulation of growth rate and budding in S. cerevisiae.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2467519
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact