or certain food products, postharvest controlled stresses or treatments with specific elicitors are applied to induce desired physical/chemical changes and/or to positively affect phytochemical content. This is the case of wine grapes where both strategies, singularly applied or coupled, can be used to modulate berry composition and, as a consequence, affect wine quality traits. Since the knowledge of the effects of these postharvest treatments on berry metabolism and the regulation of gene expression is very limited, a large-scale transcriptome analysis has been carried out, using an oligo-based microarray (14,562 probes) on skins of wine grape (Vitis vinifera L.) berries subjected to dehydration, at different rates, up to 30% of weight loss or to ethylene treatment (500 ppm for 7 days) after harvest. A number of differentially expressed targets was detected following both treatments, indicating that grape berries are still reactive at advanced stages of postharvest dehydration and that ethylene induces marked changes in transcriptome after harvest also in non-climacteric fruit such as grape berries.

Effects of Postharvest Partial Dehydration and Prolonged Treatments with Ethylene on Transcript Profiling in Skins of Wine Grape Berries

BONGHI, CLAUDIO;
2010

Abstract

or certain food products, postharvest controlled stresses or treatments with specific elicitors are applied to induce desired physical/chemical changes and/or to positively affect phytochemical content. This is the case of wine grapes where both strategies, singularly applied or coupled, can be used to modulate berry composition and, as a consequence, affect wine quality traits. Since the knowledge of the effects of these postharvest treatments on berry metabolism and the regulation of gene expression is very limited, a large-scale transcriptome analysis has been carried out, using an oligo-based microarray (14,562 probes) on skins of wine grape (Vitis vinifera L.) berries subjected to dehydration, at different rates, up to 30% of weight loss or to ethylene treatment (500 ppm for 7 days) after harvest. A number of differentially expressed targets was detected following both treatments, indicating that grape berries are still reactive at advanced stages of postharvest dehydration and that ethylene induces marked changes in transcriptome after harvest also in non-climacteric fruit such as grape berries.
2010
VI International Postharvest Symposium
9789066056138
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2484812
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact