A three-phase rectifier employing three single-phase boost power-factor-correction circuits is analyzed. Each converter operates in the continuous conduction mode (CCM), which allows a high power factor and a small EMI filter. Current sharing is ensured by a common voltage loop driving the individual current loops of the three converters. A suitable circuit arrangement is devised to limit phase interaction. The zero-voltage-transition technique (ZVT) is successfully applied to each converter, in order to obtain zero turn on losses and soft turnoff of the freewheeling diodes. Results of a 1800-W 100-kHz experimental prototype are reported, which confirm the theoretical forecasts

Implementation of single-phase boost power-factor-correction circuits in three-phase applications

SPIAZZI, GIORGIO;
1994

Abstract

A three-phase rectifier employing three single-phase boost power-factor-correction circuits is analyzed. Each converter operates in the continuous conduction mode (CCM), which allows a high power factor and a small EMI filter. Current sharing is ensured by a common voltage loop driving the individual current loops of the three converters. A suitable circuit arrangement is devised to limit phase interaction. The zero-voltage-transition technique (ZVT) is successfully applied to each converter, in order to obtain zero turn on losses and soft turnoff of the freewheeling diodes. Results of a 1800-W 100-kHz experimental prototype are reported, which confirm the theoretical forecasts
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2484858
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 97
  • ???jsp.display-item.citation.isi??? 78
social impact