A common approach for simulation of energy systems at design and off-design conditions is presented, which uses the same concepts and terminology independently of system dimension, complexity and detail. The paper shows that the higher the dimension of the system, the simpler is the model of each part of the system, but concepts and approach to built the model remain the same, being those commonly used in the literature. The approach consists in organizing energy systems models according to some criteria, which help enhance system models comprehension, and build them more easily. For any dimension and level of detail of the system these criteria consist in identifying the design specification from the environment surrounding the system, choosing the independent variables depending on the nature of the model, organizing them into categories, defining performance curves (characteristic maps) of each part of the system and organizing mass and energy balances into categories. Particular emphasis is given on modeling of system units behavior, which is generally described by the mathematical functions (characteristic maps) linking outflow to inflow variables. Examples of characteristic maps of the system units at each level of detail are shown, and models are then completed by mass, energy and momentum balances linking the behavior of all system units.

From component to macro energy systems: a common design and off-design modeling approach

RECH, SERGIO;LAZZARETTO, ANDREA
2011

Abstract

A common approach for simulation of energy systems at design and off-design conditions is presented, which uses the same concepts and terminology independently of system dimension, complexity and detail. The paper shows that the higher the dimension of the system, the simpler is the model of each part of the system, but concepts and approach to built the model remain the same, being those commonly used in the literature. The approach consists in organizing energy systems models according to some criteria, which help enhance system models comprehension, and build them more easily. For any dimension and level of detail of the system these criteria consist in identifying the design specification from the environment surrounding the system, choosing the independent variables depending on the nature of the model, organizing them into categories, defining performance curves (characteristic maps) of each part of the system and organizing mass and energy balances into categories. Particular emphasis is given on modeling of system units behavior, which is generally described by the mathematical functions (characteristic maps) linking outflow to inflow variables. Examples of characteristic maps of the system units at each level of detail are shown, and models are then completed by mass, energy and momentum balances linking the behavior of all system units.
2011
Proceedings of International Mechanical Engineering Congress & Exposition IMECE 2011
978-079185490-7
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2491180
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact