To determine whether a resistance to insulin in type 1, insulin-dependent diabetes mellitus (IDDM) is extended to both glucose and amino acid metabolism, six normal subjects and five patients with IDDM, maintained in euglycemia with intravenous insulin administration, were infused with L-[4,5-3H]leucine (Leu) and [1-14C]alpha ketoisocaproate (KIC). Steady-state rates of leucine-carbon appearance derived from protein breakdown (Leu + KIC Ra) and KIC (approximately leucine) oxidation were determined at basal and during sequential euglycemic, hyperinsulinemic (approximately 40, approximately 90 and approximately 1,300 microU/ml) clamps. In the euglycemic postabsorptive diabetic patients, despite basal hyperinsulinemia (24 +/- 6 microU/ml vs. 9 +/- 1 microU/ml in normals, P less than 0.05), Leu + KIC Ra (2.90 +/- 0.18 mumol/kg X min), and KIC oxidation (0.22 +/- 0.03 mumol/kg X min) were similar to normal values (Leu + KIC Ra = 2.74 +/- 0.25 mumol/kg X min) (oxidation = 0.20 +/- 0.02 mumol/kg X min). During stepwise hyperinsulinemia, Leu + KIC Ra in normals decreased to 2.08 +/- 0.19, to 2.00 +/- 0.17, and to 1.81 +/- 0.16 mumol/kg X min, but only to 2.77 +/- 0.16, to 2.63 +/- 0.16, and to 2.39 +/- 0.08 mumol/kg X min in the diabetic patients (P less than 0.05 or less vs. normals at each clamp step). KIC oxidation decreased in normal subjects to a larger extent than in the diabetic subjects. Glucose disposal was reduced at all insulin levels in the patients. In summary, in IDDM: (a) Peripheral hyperinsulinemia is required to normalize both fasting leucine metabolism and blood glucose concentrations. (b) At euglycemic hyperinsulinemic clamps, lower glucose disposal rates and a defective suppression of leucine-carbon appearance and oxidation were observed. We conclude that in type 1 diabetes a resistance to the metabolic effects of insulin on both glucose and amino acid metabolism is present.

Defective suppression by insulin of leucine-carbon appearance and oxidation in type 1, insulin-dependent diabetes mellitus. Evidence for insulin resistance involving glucose and amino acid metabolism.

TESSARI, PAOLO;TREVISAN, ROBERTO;
1986

Abstract

To determine whether a resistance to insulin in type 1, insulin-dependent diabetes mellitus (IDDM) is extended to both glucose and amino acid metabolism, six normal subjects and five patients with IDDM, maintained in euglycemia with intravenous insulin administration, were infused with L-[4,5-3H]leucine (Leu) and [1-14C]alpha ketoisocaproate (KIC). Steady-state rates of leucine-carbon appearance derived from protein breakdown (Leu + KIC Ra) and KIC (approximately leucine) oxidation were determined at basal and during sequential euglycemic, hyperinsulinemic (approximately 40, approximately 90 and approximately 1,300 microU/ml) clamps. In the euglycemic postabsorptive diabetic patients, despite basal hyperinsulinemia (24 +/- 6 microU/ml vs. 9 +/- 1 microU/ml in normals, P less than 0.05), Leu + KIC Ra (2.90 +/- 0.18 mumol/kg X min), and KIC oxidation (0.22 +/- 0.03 mumol/kg X min) were similar to normal values (Leu + KIC Ra = 2.74 +/- 0.25 mumol/kg X min) (oxidation = 0.20 +/- 0.02 mumol/kg X min). During stepwise hyperinsulinemia, Leu + KIC Ra in normals decreased to 2.08 +/- 0.19, to 2.00 +/- 0.17, and to 1.81 +/- 0.16 mumol/kg X min, but only to 2.77 +/- 0.16, to 2.63 +/- 0.16, and to 2.39 +/- 0.08 mumol/kg X min in the diabetic patients (P less than 0.05 or less vs. normals at each clamp step). KIC oxidation decreased in normal subjects to a larger extent than in the diabetic subjects. Glucose disposal was reduced at all insulin levels in the patients. In summary, in IDDM: (a) Peripheral hyperinsulinemia is required to normalize both fasting leucine metabolism and blood glucose concentrations. (b) At euglycemic hyperinsulinemic clamps, lower glucose disposal rates and a defective suppression of leucine-carbon appearance and oxidation were observed. We conclude that in type 1 diabetes a resistance to the metabolic effects of insulin on both glucose and amino acid metabolism is present.
1986
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2523599
Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 85
  • ???jsp.display-item.citation.isi??? 109
social impact