Geometric triangulation is at the basis of the estimation of the 3D position of a target from a set of camera measurements. The problem of optimal estimation (minimizing the L2 norm) of the target position from multi-view perspective projective measurements is typically a hard problem to solve. In literature there are different types of algorithms for this purpose, based for example on the exhaustive check of all the local minima of a proper eigenvalue problem [2], or branch- and-bound techniques [3]. However, such methods typically become unfeasible for real time applications when the number of cameras and targets become large, calling for the definition of approximate procedures to solve the reconstruction problem. In the first part of this paper, linear (fast) algorithms, computing an approximate solution to such problems, are described and compared in simulation. Then, in the second part, a Gaussian approximation to the measurement error is used to express the reconstruction error’s standard deviation as a function of the position of the reconstructed point. An upper bound, valid over all the target domain, to this expression is obtained for a case of interest. Such upper bound allows to compute a number of cameras sufficient to obtain a user defined level of position estimation accuracy.

On triangulation algorithms in large scale camera network systems

MASIERO, ANDREA;CENEDESE, ANGELO
2012

Abstract

Geometric triangulation is at the basis of the estimation of the 3D position of a target from a set of camera measurements. The problem of optimal estimation (minimizing the L2 norm) of the target position from multi-view perspective projective measurements is typically a hard problem to solve. In literature there are different types of algorithms for this purpose, based for example on the exhaustive check of all the local minima of a proper eigenvalue problem [2], or branch- and-bound techniques [3]. However, such methods typically become unfeasible for real time applications when the number of cameras and targets become large, calling for the definition of approximate procedures to solve the reconstruction problem. In the first part of this paper, linear (fast) algorithms, computing an approximate solution to such problems, are described and compared in simulation. Then, in the second part, a Gaussian approximation to the measurement error is used to express the reconstruction error’s standard deviation as a function of the position of the reconstructed point. An upper bound, valid over all the target domain, to this expression is obtained for a case of interest. Such upper bound allows to compute a number of cameras sufficient to obtain a user defined level of position estimation accuracy.
2012
PROCEEDINGS OF THE AMERICAN CONTROL CONFERENCE
9781457710957
9781467321020
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2524050
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact