The variation of the kinematical properties of the Galactic thick disk with Galactic height Z is studied by means of 412 red giants observed in the direction of the south Galactic pole up to 4.5 kpc from the plane. We confirm the non-null mean radial motion toward the Galactic anticenter found by other authors, but we find that it changes sign at |Z| = 3 kpc, and the proposed inward motion of the local standard of rest alone cannot explain these observations. The rotational velocity decreases with |Z| by -30 km s-1 kpc-1, but the data are better represented by a power law with index 1.25, similar to that proposed from the analysis of Sloan Digital Sky Survey data. All the velocity dispersions increase with |Z|, but the vertical gradients are small. The dispersions grow proportionally, with no significant variation of the anisotropy. The ratio σU/σW = 2 suggests that the thick disk could have formed from a low-latitude merging event. The vertex deviation increases with Galactic height, reaching ~20° at |Z| = 3.5 kpc. The tilt angle also increases, and the orientation of the ellipsoid in the radial-vertical plane is constantly intermediate between the alignment with the cylindrical and the spherical coordinate systems. The tilt angle at |Z| = 2 kpc coincides with the expectations of MOdified Newtonian Dynamics, but an extension of the calculations to higher |Z| is required to perform a conclusive test. Finally, between 2.5 and 3.5 kpc we detect deviations from the linear trend of many kinematical quantities, suggesting that some kinematical substructure could be present.

KINEMATICAL AND CHEMICAL VERTICAL STRUCTURE OF THE GALACTIC THICK DISK. I. THICK DISK KINEMATICS,

CARRARO, GIOVANNI;
2012

Abstract

The variation of the kinematical properties of the Galactic thick disk with Galactic height Z is studied by means of 412 red giants observed in the direction of the south Galactic pole up to 4.5 kpc from the plane. We confirm the non-null mean radial motion toward the Galactic anticenter found by other authors, but we find that it changes sign at |Z| = 3 kpc, and the proposed inward motion of the local standard of rest alone cannot explain these observations. The rotational velocity decreases with |Z| by -30 km s-1 kpc-1, but the data are better represented by a power law with index 1.25, similar to that proposed from the analysis of Sloan Digital Sky Survey data. All the velocity dispersions increase with |Z|, but the vertical gradients are small. The dispersions grow proportionally, with no significant variation of the anisotropy. The ratio σU/σW = 2 suggests that the thick disk could have formed from a low-latitude merging event. The vertex deviation increases with Galactic height, reaching ~20° at |Z| = 3.5 kpc. The tilt angle also increases, and the orientation of the ellipsoid in the radial-vertical plane is constantly intermediate between the alignment with the cylindrical and the spherical coordinate systems. The tilt angle at |Z| = 2 kpc coincides with the expectations of MOdified Newtonian Dynamics, but an extension of the calculations to higher |Z| is required to perform a conclusive test. Finally, between 2.5 and 3.5 kpc we detect deviations from the linear trend of many kinematical quantities, suggesting that some kinematical substructure could be present.
File in questo prodotto:
File Dimensione Formato  
Moni_Bidin_2012_ApJ_747_101.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 714.26 kB
Formato Adobe PDF
714.26 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2525606
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 40
social impact