The thermal, mechanical and electric properties of hybrid membranes based on Nafion that contain a [(ZrO2)∙(Ta2O5)0.119] “core-shell” nanofiller are elucidated. DSC investigations reveal the presence of four endothermic transitions between 50 and 300°C. The DMA results indicate improved mechanical stability of the hybrid materials. The DSC and DMA results are consistent with our previous suggestion of dynamic R-SO3H∙∙∙[ZrTa] cross-links in the material. These increase the thermal stability of the –SO3H groups and the temperature of thermal relaxation events occurring in hydrophobic domains of Nafion. The broadband electric spectroscopic analysis reveals two electric relaxations associated with the materials’ interfacial (σIP) and bulk proton conductivities (σEP). The wet [Nafion/(ZrTa)1.042] membrane has a conductivity of 7.0×10−2 Scm−1 at 115°C, while Nafion has a conductivity of 3.3×10−2 Scm−1 at the same temperature and humidification conditions. σEP shows VTF behaviour, suggesting that the long-range conductivity is closely related to the segmental motion of the Nafion host matrix. Long range conduction (σEP) occurs when the dynamics of the fluorocarbon matrix induces contact between different delocalization bodies (DB), which results in proton exchange processes between these DBs

Interplay between Mechanical, Electrical, and Thermal Relaxations in Nanocomposite Proton Conducting Membranes Based on Nafion and a [(ZrO2)·(Ta2O5)0.119] core-shell nanofiller

DI NOTO, VITO;PIGA, MATTEO;GIFFIN, GUINEVERE;VEZZU', KETI;
2012

Abstract

The thermal, mechanical and electric properties of hybrid membranes based on Nafion that contain a [(ZrO2)∙(Ta2O5)0.119] “core-shell” nanofiller are elucidated. DSC investigations reveal the presence of four endothermic transitions between 50 and 300°C. The DMA results indicate improved mechanical stability of the hybrid materials. The DSC and DMA results are consistent with our previous suggestion of dynamic R-SO3H∙∙∙[ZrTa] cross-links in the material. These increase the thermal stability of the –SO3H groups and the temperature of thermal relaxation events occurring in hydrophobic domains of Nafion. The broadband electric spectroscopic analysis reveals two electric relaxations associated with the materials’ interfacial (σIP) and bulk proton conductivities (σEP). The wet [Nafion/(ZrTa)1.042] membrane has a conductivity of 7.0×10−2 Scm−1 at 115°C, while Nafion has a conductivity of 3.3×10−2 Scm−1 at the same temperature and humidification conditions. σEP shows VTF behaviour, suggesting that the long-range conductivity is closely related to the segmental motion of the Nafion host matrix. Long range conduction (σEP) occurs when the dynamics of the fluorocarbon matrix induces contact between different delocalization bodies (DB), which results in proton exchange processes between these DBs
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2529973
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 77
  • ???jsp.display-item.citation.isi??? 71
social impact