Calibration of optical systems is a fundamental step in the development of a space instrumentation. We have built a new cleanroom environment, divided in different areas characterized by a different level of contamination control. A vacuum chamber (a tube of 80 cm diameter, and 2 m length), able to accommodate optical components as well as whole instruments, is interfaced with a ISO6 area, allowing the handling of the instrumentation in a clean environment. The vacuum system is dimensioned to reach 10-7 mbar pressure in the chamber. Inside, a two axis platform allows the rotation of the instrument with respect to the incident collimating beam, in order to test the response of the instrument to light coming from different points of the field of view. A monochromator coupled with different sources provides radiation in the 40-350 nm spectral range, while a parabolic mirror is used as a collimator. As source, different spectral lamps can be used to generate emission lines, while a Xe lamp can be used to have continuum spectrum. An high brilliant hollow cathode lamp has been fabricated by the group to generate extreme ultraviolet radiation. Different calibrated detectors and other completing optical components are available.
Vacuum facility for calibration of space instrumentation in cleanroom
PELIZZO, MARIA-GUGLIELMINA;NICOLOSI, PIERGIORGIO
2012
Abstract
Calibration of optical systems is a fundamental step in the development of a space instrumentation. We have built a new cleanroom environment, divided in different areas characterized by a different level of contamination control. A vacuum chamber (a tube of 80 cm diameter, and 2 m length), able to accommodate optical components as well as whole instruments, is interfaced with a ISO6 area, allowing the handling of the instrumentation in a clean environment. The vacuum system is dimensioned to reach 10-7 mbar pressure in the chamber. Inside, a two axis platform allows the rotation of the instrument with respect to the incident collimating beam, in order to test the response of the instrument to light coming from different points of the field of view. A monochromator coupled with different sources provides radiation in the 40-350 nm spectral range, while a parabolic mirror is used as a collimator. As source, different spectral lamps can be used to generate emission lines, while a Xe lamp can be used to have continuum spectrum. An high brilliant hollow cathode lamp has been fabricated by the group to generate extreme ultraviolet radiation. Different calibrated detectors and other completing optical components are available.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.