In this paper, we present a low-cost and highly configurable quality inspection system capable of capturing 2.5D color data, created using off-the-shelf machine vision components, open-source software libraries, and a combination of standard and novel algorithms for 2.5D data processing. The system uses laser triangulation to capture 3D depth, in parallel with a color camera and a line light projector to capture color texture, which are then combined into a color 2.5D model in real- time. Using many examples of completeness inspection tasks that are extremely difficult to solve with current 2D-based methods, we demonstrate how the 2.5D images and point clouds generated by our system can be used to solve these complex tasks effectively and efficiently. Our system is currently being integrated into a real production environment, showing that completeness inspection incorporating 3D technology can be readily achieved in a short time at low costs.

3DComplete: Efficient Completeness Inspection using a 2.5D Color Scanner

SO, EDMOND;MUNARO, MATTEO;MICHIELETTO, STEFANO;MENEGATTI, EMANUELE
2013

Abstract

In this paper, we present a low-cost and highly configurable quality inspection system capable of capturing 2.5D color data, created using off-the-shelf machine vision components, open-source software libraries, and a combination of standard and novel algorithms for 2.5D data processing. The system uses laser triangulation to capture 3D depth, in parallel with a color camera and a line light projector to capture color texture, which are then combined into a color 2.5D model in real- time. Using many examples of completeness inspection tasks that are extremely difficult to solve with current 2D-based methods, we demonstrate how the 2.5D images and point clouds generated by our system can be used to solve these complex tasks effectively and efficiently. Our system is currently being integrated into a real production environment, showing that completeness inspection incorporating 3D technology can be readily achieved in a short time at low costs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2574234
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact