Sirtuins enzymes are a conserved family of nicotinamide adenine dinucleotide (NAD)-dependent deacetylases and ADP-ribosyltransferases that mediate responses to oxidative stress, fasting and dietary restriction in mammals. Vascular smooth muscle cells (VSMCs) are involved in many mechanisms that regulate vascular biology in vivo but the role of SIRT1 has not been explored in much detail. Therefore, we investigated the regulation of SIRT1 in cultured VSMCs under various stress conditions including diabetes. Sprague-Dawley rats were made diabetic by injecting a single dose of streptozotocin (65 mg/Kg), and aortic VSMCs were isolated after 4 weeks. Immunocytochemistry showed that SIRT1 was localized predominantly in the nucleus, with lower staining in VSMCs from STZ-diabetic as compared with normoglycemic rats. Previous diabetes induction in vivo and high glucose concentrations in vitro significantly downregulated SIRT1 amounts as detected in Western blot assays, whereas TNF-α (30 ng/ml) stimulation failed to induce significant changes. Because estrogen signaling affects several pathways of oxidative stress control, we also investigated SIRT1 modulation by 17β-estradiol. Treatment with the hormone (10 nM) or a selective estrogen receptor-α agonist decreased SIRT1 levels in VSMCs from normoglycemic but not in those from STZ-diabetic animals. 17β-estradiol treatment also enhanced activation of AMP-dependent kinase, which partners with SIRT1 in a signaling axis. SIRT1 downregulation by 17β-estradiol could be observed as well in human peripheral blood mononuclear cells, a cell type in which SIRT1 downregulation is associated with insulin resistance and subclinical atherosclerosis. These data suggest that SIRT1 protein levels are regulated by diverse cellular stressors to a variable extent in VSMCs from diabetic and normoglycemic rats, warranting further investigation on SIRT1 as a modulator of VSMC activity in settings of vascular inflammation.

Regulation of SIRT1 in Vascular Smooth Muscle Cells from Streptozotocin-Diabetic Rats

TONIOLO, ALICE;NASSI, ALBERTO;CIGNARELLA, ANDREA;BOLEGO, CHIARA
2013

Abstract

Sirtuins enzymes are a conserved family of nicotinamide adenine dinucleotide (NAD)-dependent deacetylases and ADP-ribosyltransferases that mediate responses to oxidative stress, fasting and dietary restriction in mammals. Vascular smooth muscle cells (VSMCs) are involved in many mechanisms that regulate vascular biology in vivo but the role of SIRT1 has not been explored in much detail. Therefore, we investigated the regulation of SIRT1 in cultured VSMCs under various stress conditions including diabetes. Sprague-Dawley rats were made diabetic by injecting a single dose of streptozotocin (65 mg/Kg), and aortic VSMCs were isolated after 4 weeks. Immunocytochemistry showed that SIRT1 was localized predominantly in the nucleus, with lower staining in VSMCs from STZ-diabetic as compared with normoglycemic rats. Previous diabetes induction in vivo and high glucose concentrations in vitro significantly downregulated SIRT1 amounts as detected in Western blot assays, whereas TNF-α (30 ng/ml) stimulation failed to induce significant changes. Because estrogen signaling affects several pathways of oxidative stress control, we also investigated SIRT1 modulation by 17β-estradiol. Treatment with the hormone (10 nM) or a selective estrogen receptor-α agonist decreased SIRT1 levels in VSMCs from normoglycemic but not in those from STZ-diabetic animals. 17β-estradiol treatment also enhanced activation of AMP-dependent kinase, which partners with SIRT1 in a signaling axis. SIRT1 downregulation by 17β-estradiol could be observed as well in human peripheral blood mononuclear cells, a cell type in which SIRT1 downregulation is associated with insulin resistance and subclinical atherosclerosis. These data suggest that SIRT1 protein levels are regulated by diverse cellular stressors to a variable extent in VSMCs from diabetic and normoglycemic rats, warranting further investigation on SIRT1 as a modulator of VSMC activity in settings of vascular inflammation.
2013
File in questo prodotto:
File Dimensione Formato  
journal.pone.0065666.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 653.72 kB
Formato Adobe PDF
653.72 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2680469
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact