The fabrication of nanostructures is a very intense field of research in material science over the last decades. Overcoming the limit imposed by the diffraction limit in lithography was addressed in several ways: shifting to smaller wavelength, changing radiation and using electrons or ions instead of photons or using non-conventional bottom up techniques like self-assembly. There are few studies on fabrication of ordered TiO2 nanostructures, mostly confined to non-scalable technologies, while nanostructured TiO 2 is a material used in many different fields of applications. In our work we present a hybrid nanofabrication technique based on self-assembly coupled with standard UV lithography. With this method we were able to fabricate in a single step and with the use of inexpensive equipment a 2D Nano Bowl Array of TiO2 with sub wavelength features and easily scalable pattern features.

Patterned TiO2 nanostructures fabricated with a novel inorganic resist

PEROTTO, GIOVANNI;ANTONELLO, ALESSANDRO;FERRARO, DAVIDE;MATTEI, GIOVANNI;MARTUCCI, ALESSANDRO
2013

Abstract

The fabrication of nanostructures is a very intense field of research in material science over the last decades. Overcoming the limit imposed by the diffraction limit in lithography was addressed in several ways: shifting to smaller wavelength, changing radiation and using electrons or ions instead of photons or using non-conventional bottom up techniques like self-assembly. There are few studies on fabrication of ordered TiO2 nanostructures, mostly confined to non-scalable technologies, while nanostructured TiO 2 is a material used in many different fields of applications. In our work we present a hybrid nanofabrication technique based on self-assembly coupled with standard UV lithography. With this method we were able to fabricate in a single step and with the use of inexpensive equipment a 2D Nano Bowl Array of TiO2 with sub wavelength features and easily scalable pattern features.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2683927
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact