Large wood enhance the dynamics of geomorphic processes in river systems, increases the morphological complexity of the channel bed, and provides habitats for fish and invertebrates. On the other side, if transported during high-magnitude events, large wood pieces can increase flood risks in sensitive places such as bridges and narrow cross sections prone to outbank flows. However, the dynamics and mobility of logs in rivers is poorly understood, especially in wide gravel-bed rivers. Recent studies have employed fixed video cameras to assess logs velocity, but little evidence is still available about travel length during flood events of different magnitude. This study was conducted in a valley reach of the Tagliamento river, located in the North East of Italy. The Tagliamento river is approximately 800 m wide in the study area, and is characterized by relatively high natural conditions and complex fluvial dynamics. Log mobility have been studied from June 2010 to October 2011, a period characterized by a relatively high magnitude flood in November 2010. Log mobility and displacement during floods have been measured by implanting active radio transmitters (RFID) in 113 logs and GPS track devices in 42 logs. The first devices allow to recover the log after flood events by using a portable antenna, and to derive the displacement length over the monitoring period, whereas the second devices allows to calculate instantaneous (1 sec) and average log velocity of moving logs. Recovery rate of logs equipped with RFID and GPS was about 50% and 60%, respectively. A preliminary analysis of the data collected indicates that there is a positive relationship between displacement length and the peak of flood events, as well as a positive relationship between log velocity and the flood magnitude. Also, a critical flow rate over which logs stranded on active bars can be transported has been identified. The ability to predict wood mobility in gravel-bed rivers could allow to define better strategies of river management and restoration, by improving the ability to understand wood transport processes and calibrate budgets of wood in rivers.

Displacement length and velocity of tagged logs in the Tagliamento river

RAVAZZOLO, DIEGO;MAO, LUCA;PICCO, LORENZO;LENZI, MARIO ARISTIDE
2013

Abstract

Large wood enhance the dynamics of geomorphic processes in river systems, increases the morphological complexity of the channel bed, and provides habitats for fish and invertebrates. On the other side, if transported during high-magnitude events, large wood pieces can increase flood risks in sensitive places such as bridges and narrow cross sections prone to outbank flows. However, the dynamics and mobility of logs in rivers is poorly understood, especially in wide gravel-bed rivers. Recent studies have employed fixed video cameras to assess logs velocity, but little evidence is still available about travel length during flood events of different magnitude. This study was conducted in a valley reach of the Tagliamento river, located in the North East of Italy. The Tagliamento river is approximately 800 m wide in the study area, and is characterized by relatively high natural conditions and complex fluvial dynamics. Log mobility have been studied from June 2010 to October 2011, a period characterized by a relatively high magnitude flood in November 2010. Log mobility and displacement during floods have been measured by implanting active radio transmitters (RFID) in 113 logs and GPS track devices in 42 logs. The first devices allow to recover the log after flood events by using a portable antenna, and to derive the displacement length over the monitoring period, whereas the second devices allows to calculate instantaneous (1 sec) and average log velocity of moving logs. Recovery rate of logs equipped with RFID and GPS was about 50% and 60%, respectively. A preliminary analysis of the data collected indicates that there is a positive relationship between displacement length and the peak of flood events, as well as a positive relationship between log velocity and the flood magnitude. Also, a critical flow rate over which logs stranded on active bars can be transported has been identified. The ability to predict wood mobility in gravel-bed rivers could allow to define better strategies of river management and restoration, by improving the ability to understand wood transport processes and calibrate budgets of wood in rivers.
2013
“Horizons in agricultural, forestry and biosystems engineering”
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2748878
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact