Small quantities of liquid in a granular material control the flow dynamics as well as the triggering and jamming phases. In order to study this problem, some experimental collapse tests conducted in a rectangular box were reproduced with a 1:1 scale numerical model using the Discrete Element Method. In simulations the effect of the capillary bridges has been investigated implementing a mid-range attractive force between particles based on the minimum energy approach. Also a bonding-debonding mechanism was incorporated in the algorithm and the volume of each sessile drop on the particle surface was considered during its motion. The influence of some variables was investigated with respect to the final slope profiles and the runout lengths: the initial liquid content, the particle size, the solid density, the liquid surface tension, and the liquid-solid contact angle. Also the crucial effect of the confinement walls on the collapse phenomenon was investigated: wet particles adhere to the lateral walls providing a higher flow resistance in comparison to the same material in dry conditions. It was observed that particles with largest path-lengths are localized near the movable wall at a middle-height of the initial column sample. Other particles at the surface moves in a rigid way especially if they were wet and with a low solid density. The “fidelity” of each particle with respect to the nearest neighbours was evaluated allowing to recognize the emergence of clusters of particles and rigid parts, to extract the failure surface and to localize where debonding mechanisms concentrate in the wet case.

Discrete particle simulations and experiments on the collapse of wet granular columns

GABRIELI, FABIO;ARTONI, RICCARDO;SANTOMASO, ANDREA CLAUDIO;COLA, SIMONETTA
2013

Abstract

Small quantities of liquid in a granular material control the flow dynamics as well as the triggering and jamming phases. In order to study this problem, some experimental collapse tests conducted in a rectangular box were reproduced with a 1:1 scale numerical model using the Discrete Element Method. In simulations the effect of the capillary bridges has been investigated implementing a mid-range attractive force between particles based on the minimum energy approach. Also a bonding-debonding mechanism was incorporated in the algorithm and the volume of each sessile drop on the particle surface was considered during its motion. The influence of some variables was investigated with respect to the final slope profiles and the runout lengths: the initial liquid content, the particle size, the solid density, the liquid surface tension, and the liquid-solid contact angle. Also the crucial effect of the confinement walls on the collapse phenomenon was investigated: wet particles adhere to the lateral walls providing a higher flow resistance in comparison to the same material in dry conditions. It was observed that particles with largest path-lengths are localized near the movable wall at a middle-height of the initial column sample. Other particles at the surface moves in a rigid way especially if they were wet and with a low solid density. The “fidelity” of each particle with respect to the nearest neighbours was evaluated allowing to recognize the emergence of clusters of particles and rigid parts, to extract the failure surface and to localize where debonding mechanisms concentrate in the wet case.
2013
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2774078
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 23
social impact