Motivated by the increasing importance of Adaptive Optics (AO) systems for improving the real resolution of large ground telescopes, and by the need of testing the AO system performance in realistic working conditions, in this paper we address the problem of simulating the turbulence effect on ground telescope observations at high resolution. The multiscale approach presented here generalizes that in [3]: First, a relevant computational time reduction is obtained by exploiting a local spatial principal component analysis (PCA) representation of the turbulence. Furthermore, differently from [3], the turbulence at low resolution is modeled as a moving average (MA) process. While in [3] the wind velocity was restricted to be directed along one of the two spatial axes, the approach proposed here allows to evolve the turbulence indifferently in all the directions. In our simulations the proposed procedure reproduces with good accuracy the theoretical statistical characteristics of the turbulent phase.

Multiscale phase screens synthesis based on local PCA

BEGHI, ALESSANDRO;CENEDESE, ANGELO;MASIERO, ANDREA
2013

Abstract

Motivated by the increasing importance of Adaptive Optics (AO) systems for improving the real resolution of large ground telescopes, and by the need of testing the AO system performance in realistic working conditions, in this paper we address the problem of simulating the turbulence effect on ground telescope observations at high resolution. The multiscale approach presented here generalizes that in [3]: First, a relevant computational time reduction is obtained by exploiting a local spatial principal component analysis (PCA) representation of the turbulence. Furthermore, differently from [3], the turbulence at low resolution is modeled as a moving average (MA) process. While in [3] the wind velocity was restricted to be directed along one of the two spatial axes, the approach proposed here allows to evolve the turbulence indifferently in all the directions. In our simulations the proposed procedure reproduces with good accuracy the theoretical statistical characteristics of the turbulent phase.
2013
Proceedings of the 10th IEEE International Conference on Control Applications
9781467347075
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2795761
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact