The covalent chemistry of carbon nanostructures has put forth a wide variety of interesting derivatives that widen their potential as functional materials. However, the synthetic procedures that have been developed to functionalize the nanostructures may require long reaction times and harsh conditions. In this paper, we study the continuous flow processing of single-wall carbon nanotubes with azomethine ylides and diazonium salts and demonstrate that this approach is effective to reduce reaction times and tune the properties of the functionalized carbon materials.

Chemistry of Carbon Nanotubes in Flow

MAITY, PRASENJIT;CAROFIGLIO, TOMMASO;MENNA, ENZO;MAGGINI, MICHELE
2014

Abstract

The covalent chemistry of carbon nanostructures has put forth a wide variety of interesting derivatives that widen their potential as functional materials. However, the synthetic procedures that have been developed to functionalize the nanostructures may require long reaction times and harsh conditions. In this paper, we study the continuous flow processing of single-wall carbon nanotubes with azomethine ylides and diazonium salts and demonstrate that this approach is effective to reduce reaction times and tune the properties of the functionalized carbon materials.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2826905
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact