The contribution of elevated glucagon-like peptide 1 (GLP-1) to postprandial glucose metabolism after Roux-en-Y gastric bypass (RYGB) has been the subject of uncertainty. We used exendin-9,39, a competitive antagonist of GLP-1, to examine glucose metabolism, islet hormone secretion, and gastrointestinal transit in subjects after RYGB and in matched control subjects. Subjects were studied in the presence or absence of exendin-9,39 infused at 300 pmol/kg/min. Exendin-9,39 resulted in an increase in integrated postprandial glucose concentrations post-RYGB (3.6 ± 0.5 vs. 2.0 ± 0.4 mol/6 h, P = 0.001). Exendin-9,39 decreased insulin concentrations (12.3 ± 2.2 vs. 18.1 ± 3.1 nmol/6 h, P = 0.002) and the β-cell response to glucose (Total, 13 ± 1 vs. 11 ± 1 × 10(-9) min(-1), P = 0.01) but did not alter the disposition index (DI). In control subjects, exendin-9,39 also increased glucose (2.2 ± 0.4 vs. 1.7 ± 0.3 mol/6 h, P = 0.03) without accompanying changes in insulin concentrations, resulting in an impaired DI. Post-RYGB, acceleration of stomach emptying during the first 30 min by exendin-9,39 did not alter meal appearance, and similarly, suppression of glucose production and stimulation of glucose disappearance were unaltered in RYGB subjects. These data indicate that endogenous GLP-1 has effects on glucose metabolism and on gastrointestinal motility years after RYGB. However, it remains uncertain whether this explains all of the changes after RYGB.

Contribution of Endogenous Glucagon-Like Peptide 1 to Glucose Metabolism After Roux-en-Y Gastric Bypass

MICHELETTO, FRANCESCO;DALLA MAN, CHIARA;COBELLI, CLAUDIO;
2014

Abstract

The contribution of elevated glucagon-like peptide 1 (GLP-1) to postprandial glucose metabolism after Roux-en-Y gastric bypass (RYGB) has been the subject of uncertainty. We used exendin-9,39, a competitive antagonist of GLP-1, to examine glucose metabolism, islet hormone secretion, and gastrointestinal transit in subjects after RYGB and in matched control subjects. Subjects were studied in the presence or absence of exendin-9,39 infused at 300 pmol/kg/min. Exendin-9,39 resulted in an increase in integrated postprandial glucose concentrations post-RYGB (3.6 ± 0.5 vs. 2.0 ± 0.4 mol/6 h, P = 0.001). Exendin-9,39 decreased insulin concentrations (12.3 ± 2.2 vs. 18.1 ± 3.1 nmol/6 h, P = 0.002) and the β-cell response to glucose (Total, 13 ± 1 vs. 11 ± 1 × 10(-9) min(-1), P = 0.01) but did not alter the disposition index (DI). In control subjects, exendin-9,39 also increased glucose (2.2 ± 0.4 vs. 1.7 ± 0.3 mol/6 h, P = 0.03) without accompanying changes in insulin concentrations, resulting in an impaired DI. Post-RYGB, acceleration of stomach emptying during the first 30 min by exendin-9,39 did not alter meal appearance, and similarly, suppression of glucose production and stimulation of glucose disappearance were unaltered in RYGB subjects. These data indicate that endogenous GLP-1 has effects on glucose metabolism and on gastrointestinal motility years after RYGB. However, it remains uncertain whether this explains all of the changes after RYGB.
2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2835499
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 105
  • ???jsp.display-item.citation.isi??? 98
social impact