We investigate proton-induced upsets in state-of-the-art NAND Flash memories, down to the 25-nm node. The most striking result is the opposite behavior of Multi-Level Cell (MLC) and Single-Level Cell (SLC) devices, in terms of floating gate error cross section as a function of proton energy. In fact, the cross section increases with proton energy in SLC whereas it decreases in MLC. The reason for this behavior is studied through comparison of heavy-ion data and device simulations. The main factors that determine proton energy dependence are discussed, such as the energy dependence of nuclear cross section between protons and chip materials, the LET, energy, and angular distributions of the generated secondaries, but also the heavy-ion and total dose response of the studied devices. Proton irradiation effects in the control circuitry of NAND Flash memories are shown as well.

Proton-Induced Upsets in SLC and MLC NAND Flash Memories

BAGATIN, MARTA;GERARDIN, SIMONE;PACCAGNELLA, ALESSANDRO;
2013

Abstract

We investigate proton-induced upsets in state-of-the-art NAND Flash memories, down to the 25-nm node. The most striking result is the opposite behavior of Multi-Level Cell (MLC) and Single-Level Cell (SLC) devices, in terms of floating gate error cross section as a function of proton energy. In fact, the cross section increases with proton energy in SLC whereas it decreases in MLC. The reason for this behavior is studied through comparison of heavy-ion data and device simulations. The main factors that determine proton energy dependence are discussed, such as the energy dependence of nuclear cross section between protons and chip materials, the LET, energy, and angular distributions of the generated secondaries, but also the heavy-ion and total dose response of the studied devices. Proton irradiation effects in the control circuitry of NAND Flash memories are shown as well.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2838205
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact