During the last decade markerless motion capture techniques have gained an increasing interest in the biomechanics community. In the clinical field, however, the application of markerless techniques is still debated. This is mainly due to a limited number of papers dedicated to the comparison with the state of the art of marker based motion capture, in term of repeatability of the three dimensional joints' kinematics. In the present work the application of markerless technique to data acquired with a marker-based system was investigated. All videos and external data were recorded with the same motion capture system and included the possibility to use markerless and marker-based methods simultaneously. Three dimensional markerless joint kinematics was estimated and compared with the one determined with traditional marker based systems, through the evaluation of root mean square distance between joint rotations. In order to compare the performance of markerless and marker-based systems in terms of clinically relevant joint angles estimation, the same anatomical frames of reference were defined for both systems. Differences in calibration and synchronization of the cameras were excluded by applying the same wand calibration and lens distortion correction to both techniques. Best results were achieved for knee flexion-extension angle, with an average root mean square distance of 11.75 deg, corresponding to 18.35% of the range of motion. Sagittal plane kinematics was estimated better than on the other planes also for hip and ankle (root mean square distance of 17.62 deg e.g. 44.66%, and 7.17 deg e.g. 33.12%), meanwhile estimates for hip joint were the most incorrect. This technique enables users of markerless technology to compare differences with marker-based in order to define the degree of applicability of markerless technique.

Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept.

SAWACHA, ZIMI;COBELLI, CLAUDIO
2014

Abstract

During the last decade markerless motion capture techniques have gained an increasing interest in the biomechanics community. In the clinical field, however, the application of markerless techniques is still debated. This is mainly due to a limited number of papers dedicated to the comparison with the state of the art of marker based motion capture, in term of repeatability of the three dimensional joints' kinematics. In the present work the application of markerless technique to data acquired with a marker-based system was investigated. All videos and external data were recorded with the same motion capture system and included the possibility to use markerless and marker-based methods simultaneously. Three dimensional markerless joint kinematics was estimated and compared with the one determined with traditional marker based systems, through the evaluation of root mean square distance between joint rotations. In order to compare the performance of markerless and marker-based systems in terms of clinically relevant joint angles estimation, the same anatomical frames of reference were defined for both systems. Differences in calibration and synchronization of the cameras were excluded by applying the same wand calibration and lens distortion correction to both techniques. Best results were achieved for knee flexion-extension angle, with an average root mean square distance of 11.75 deg, corresponding to 18.35% of the range of motion. Sagittal plane kinematics was estimated better than on the other planes also for hip and ankle (root mean square distance of 17.62 deg e.g. 44.66%, and 7.17 deg e.g. 33.12%), meanwhile estimates for hip joint were the most incorrect. This technique enables users of markerless technology to compare differences with marker-based in order to define the degree of applicability of markerless technique.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2839980
Citazioni
  • ???jsp.display-item.citation.pmc??? 32
  • Scopus 125
  • ???jsp.display-item.citation.isi??? 109
social impact