We present a method for analyzing the reflectance properties of atmosphereless bodies as asteroids and comet nuclei. The method is self-consistent, independent of the shape model of the object and can be easily applied for any space mission target. We used it for the E-type Main Belt asteroid (2867) Steins, observed from the OSIRIS-WAC camera onboard Rosetta spacecraft during a close approach on September 5, 2008. We investigate the reflectance dependence on phase angle which is interpreted in terms of the Hapke's theory of bidirectional reflectance. A deeper analysis allows to obtain an estimate of the typical size of the regolith grains. Steins regolith layer seems to be made of large, highly scattering iron-poor opaque silicate particles. The macroscopic roughness, probably influenced by the global irregular shape, appears fairly high, comparable with radar measurements of other E-type asteroids. Assuming an enstatite composition, we estimated a grain size of about 30-130 mu m and we noticed a correlation between grain size and wavelength, suggesting the existence of a grain size distribution, as expected from real surfaces. The comparison with more accurate calculations (Spjuth \textit{et al.}, 2009) shows that our simplified method is robust and reliable for a preliminary and shape-independent analysis of the reflectance properties of atmosphereless bodies.

Photometric Analysis of Asteroid (2867) Steins from Rosetta OSIRIS Images

LA FORGIA, FIORANGELA;MAGRIN, SARA;BERTINI, IVANO;LAZZARIN, MONICA;PAJOLA, MAURIZIO;BARBIERI, CESARE
2012

Abstract

We present a method for analyzing the reflectance properties of atmosphereless bodies as asteroids and comet nuclei. The method is self-consistent, independent of the shape model of the object and can be easily applied for any space mission target. We used it for the E-type Main Belt asteroid (2867) Steins, observed from the OSIRIS-WAC camera onboard Rosetta spacecraft during a close approach on September 5, 2008. We investigate the reflectance dependence on phase angle which is interpreted in terms of the Hapke's theory of bidirectional reflectance. A deeper analysis allows to obtain an estimate of the typical size of the regolith grains. Steins regolith layer seems to be made of large, highly scattering iron-poor opaque silicate particles. The macroscopic roughness, probably influenced by the global irregular shape, appears fairly high, comparable with radar measurements of other E-type asteroids. Assuming an enstatite composition, we estimated a grain size of about 30-130 mu m and we noticed a correlation between grain size and wavelength, suggesting the existence of a grain size distribution, as expected from real surfaces. The comparison with more accurate calculations (Spjuth \textit{et al.}, 2009) shows that our simplified method is robust and reliable for a preliminary and shape-independent analysis of the reflectance properties of atmosphereless bodies.
2012
Memorie della Societa Astronomica Italiana Supplement
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3033463
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact