We discuss how the topological charge of an OAM-carrying plasmon (Plasmonic Vortex) can be probed by monitoring the near-field response of plasmonic nanostructures suitably arranged inside a Plasmonic Vortex Lens. The turning "on" or "off" of four gold nanorods, detected by a Scanning Near field Optical Microscope (SNOM), acts as a fingerprint of the OAM state of the PV at the nanoscale. Different configurations are studied numerically, the integrated structure is fabricated and near field characterization is performed for a particularly meaningful case.

Sub-wavelength confinement of the orbital angular momentum of light probed by plasmonic nanorods resonances

CARLI, MARTA;ZILIO, PIERFRANCESCO;GAROLI, DENIS;ROMANATO, FILIPPO
2014

Abstract

We discuss how the topological charge of an OAM-carrying plasmon (Plasmonic Vortex) can be probed by monitoring the near-field response of plasmonic nanostructures suitably arranged inside a Plasmonic Vortex Lens. The turning "on" or "off" of four gold nanorods, detected by a Scanning Near field Optical Microscope (SNOM), acts as a fingerprint of the OAM state of the PV at the nanoscale. Different configurations are studied numerically, the integrated structure is fabricated and near field characterization is performed for a particularly meaningful case.
2014
File in questo prodotto:
File Dimensione Formato  
oe-22-21-26302.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.9 MB
Formato Adobe PDF
2.9 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3085100
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact