In the biomedical scenario, near-infrared spectroscopy (NIRS) is employed as a non-invasive brain imaging technique. In particular, functional near-infrared spectroscopy (fNIRS) provides the neural evoked response, also known as haemodynamic response (HR), to pre-defined stimuli. Processing of fNIRS data requires a great effort to extrapolate the informative component from a noisy mixture of physiological and spurious contributions. In this paper a novel fNIRS de-noising algorithm is presented and validated over both simulation and experimental data. For each evoked response, a specific noise model is identified and subtracted from the acquired data. The algorithm relies on a combination of a super-resolution technique based on Compressive Sensing theory and a spectral analysis performed via Taylor-Fourier transform. Preliminary experimental results show a significant reduction of spurious components in all the considered conditions. No significant distortions are introduced in the recovered HR, ensuring reliable clinical interpretation of the acquired trace.

A Compressive Sensing Spectral Model for fNIRS Haemodynamic Response De-Noising

FRIGO, GUGLIELMO;BRIGADOI, SABRINA;GIORGI, GIADA;SPARACINO, GIOVANNI;NARDUZZI, CLAUDIO
2015

Abstract

In the biomedical scenario, near-infrared spectroscopy (NIRS) is employed as a non-invasive brain imaging technique. In particular, functional near-infrared spectroscopy (fNIRS) provides the neural evoked response, also known as haemodynamic response (HR), to pre-defined stimuli. Processing of fNIRS data requires a great effort to extrapolate the informative component from a noisy mixture of physiological and spurious contributions. In this paper a novel fNIRS de-noising algorithm is presented and validated over both simulation and experimental data. For each evoked response, a specific noise model is identified and subtracted from the acquired data. The algorithm relies on a combination of a super-resolution technique based on Compressive Sensing theory and a spectral analysis performed via Taylor-Fourier transform. Preliminary experimental results show a significant reduction of spurious components in all the considered conditions. No significant distortions are introduced in the recovered HR, ensuring reliable clinical interpretation of the acquired trace.
2015
Proceedings of the IEEE International Symposium on Medical Measurements and Applications
978-147996476-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3143728
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact