The particular importance of Ca2+ signaling to neurons demands its precise regulation within their cytoplasm. Isoform 3 of the plasma membrane Ca2+ ATPase (the PMCA3 pump), which is highly expressed in brain and cerebellum, plays an important role in the regulation of neuronal Ca2+. A genetic defect of the function of the PMCA3 pump has been described in one family with X-linked congenital cerebellar ataxia. Here we describe a novel mutation of the PMCA3 pump (ATP2B3) in a patient with global developmental delay, generalized hypotonia and cerebellar ataxia. The mutation (a R482H replacement) impairs the Ca2+ ejection function of the pump. It reduces the ability of the pump expressed in model cells to control Ca2+ transients generated by cell stimulation and impairs its Ca2+ extrusion function under conditions of low resting cytosolic Ca2+ as well. In silico analysis of the structural effect of the mutation suggests a reduced stabilization of the portion of the pump surrounding the mutated residue in the Ca2+-bound state. The patient also carries two missense mutations in LAMA1, encoding for laminin subunit 1α. On the basis of the family pedigree of the patient, the presence of both PMCA3 and LAMA1 mutations appears to be necessary for the development of the disease. Considering the observed defect in cellular Ca2+ homeostasis and the previous finding that PMCAs act as digenic modulators in Ca2+-linked pathologies, the PMCA3 dysfunction along with LAMA1 mutations could act synergistically to cause the neurological phenotype.

A novel mutation in isoform 3 of the plasma membrane Ca2+ pump impairs cellular Ca2+ homeostasis in a patient with cerebellar ataxia and laminin subunit 1α mutations.

CALI', TITO;LOPREIATO, RAFFAELE;FRIZZARIN, MARTINA;ZANOTTI, GIUSEPPE;BRINI, MARISA;CARAFOLI, ERNESTO
2015

Abstract

The particular importance of Ca2+ signaling to neurons demands its precise regulation within their cytoplasm. Isoform 3 of the plasma membrane Ca2+ ATPase (the PMCA3 pump), which is highly expressed in brain and cerebellum, plays an important role in the regulation of neuronal Ca2+. A genetic defect of the function of the PMCA3 pump has been described in one family with X-linked congenital cerebellar ataxia. Here we describe a novel mutation of the PMCA3 pump (ATP2B3) in a patient with global developmental delay, generalized hypotonia and cerebellar ataxia. The mutation (a R482H replacement) impairs the Ca2+ ejection function of the pump. It reduces the ability of the pump expressed in model cells to control Ca2+ transients generated by cell stimulation and impairs its Ca2+ extrusion function under conditions of low resting cytosolic Ca2+ as well. In silico analysis of the structural effect of the mutation suggests a reduced stabilization of the portion of the pump surrounding the mutated residue in the Ca2+-bound state. The patient also carries two missense mutations in LAMA1, encoding for laminin subunit 1α. On the basis of the family pedigree of the patient, the presence of both PMCA3 and LAMA1 mutations appears to be necessary for the development of the disease. Considering the observed defect in cellular Ca2+ homeostasis and the previous finding that PMCAs act as digenic modulators in Ca2+-linked pathologies, the PMCA3 dysfunction along with LAMA1 mutations could act synergistically to cause the neurological phenotype.
File in questo prodotto:
File Dimensione Formato  
J. Biol. Chem.-2015-Calì-16132-41-2.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 2.98 MB
Formato Adobe PDF
2.98 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3154926
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 37
social impact