We propose a pre-training technique for recurrent neural networks based on linear autoencoder networks for sequences, i.e. linear dynamical systems modelling the target sequences. We start by giving a closed form solution for the definition of the optimal weights of a linear autoencoder given a training set of sequences. This solution, however, is computationally very demanding, so we suggest a procedure to get an approximate solution for a given number of hidden units. The weights obtained for the linear autoencoder are then used as initial weights for the input- to-hidden connections of a recurrent neural network, which is then trained on the desired task. Using four well known datasets of sequences of polyphonic music, we show that the proposed pre-training approach is highly effective, since it allows to largely improve the state of the art results on all the considered datasets.

Pre-training of Recurrent Neural Networks via Linear Autoencoders

Luca Pasa;SPERDUTI, ALESSANDRO
2014

Abstract

We propose a pre-training technique for recurrent neural networks based on linear autoencoder networks for sequences, i.e. linear dynamical systems modelling the target sequences. We start by giving a closed form solution for the definition of the optimal weights of a linear autoencoder given a training set of sequences. This solution, however, is computationally very demanding, so we suggest a procedure to get an approximate solution for a given number of hidden units. The weights obtained for the linear autoencoder are then used as initial weights for the input- to-hidden connections of a recurrent neural network, which is then trained on the desired task. Using four well known datasets of sequences of polyphonic music, we show that the proposed pre-training approach is highly effective, since it allows to largely improve the state of the art results on all the considered datasets.
2014
Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014
Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3156628
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact