Fluorescence is a powerful tool in characterizing the photosynthetic properties of microalgae. In this work we discuss a dynamic model able to accurately represent Pulse Amplitude Method (PAM) fluorescence data. The model includes photoproduction, photoinhibition and photoregulation and has been calibrated using data from a culture of Nannochloropsis Gaditana. The main objective of the work is to propose an experiment design approach to determine information rich PAM experiments and identify the model. Moreover, we will show how the model can be used to predict the photosynthesis rate under dynamic light conditions. Finally, the work shows that different PI curve characteristics arise as a result of different experimental protocols and highlights the importance of the accurate description of the protocols used to derive the experimental data.

Using fluorescence measurements to model key phenomena in microalgae photosynthetic mechanisms

BERNARDI, ANDREA;MENEGHESSO, ANDREA;MOROSINOTTO, TOMAS;BEZZO, FABRIZIO
2015

Abstract

Fluorescence is a powerful tool in characterizing the photosynthetic properties of microalgae. In this work we discuss a dynamic model able to accurately represent Pulse Amplitude Method (PAM) fluorescence data. The model includes photoproduction, photoinhibition and photoregulation and has been calibrated using data from a culture of Nannochloropsis Gaditana. The main objective of the work is to propose an experiment design approach to determine information rich PAM experiments and identify the model. Moreover, we will show how the model can be used to predict the photosynthesis rate under dynamic light conditions. Finally, the work shows that different PI curve characteristics arise as a result of different experimental protocols and highlights the importance of the accurate description of the protocols used to derive the experimental data.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3157126
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact