Flywheel energy storage is one of the most suitable solutions for power-intensive applications due to its high reliability, relative immunity to environment aspects and long lifespan. On the other side, power supply of magnetic bearings, required for high-speed systems, may lead to the complete self-discharge at no-load in islanded operation within hours. The paper presents an optimized design of a hybrid suspension system for steel rotor flywheels combining permanent magnets and excitation coils, activated only in presence of displacements with respect to vertical steady-state position. Dynamic behavior is simulated by the adoption of a non-linear electromagnetic model including the influence of different parameters (for instance, temperature on magnet properties).

Design optimization of the magnetic suspension for a flywheel energy storage application

ANDRIOLLO, MAURO;SCALDAFERRO, ENRICO;TORTELLA, ANDREA
2015

Abstract

Flywheel energy storage is one of the most suitable solutions for power-intensive applications due to its high reliability, relative immunity to environment aspects and long lifespan. On the other side, power supply of magnetic bearings, required for high-speed systems, may lead to the complete self-discharge at no-load in islanded operation within hours. The paper presents an optimized design of a hybrid suspension system for steel rotor flywheels combining permanent magnets and excitation coils, activated only in presence of displacements with respect to vertical steady-state position. Dynamic behavior is simulated by the adoption of a non-linear electromagnetic model including the influence of different parameters (for instance, temperature on magnet properties).
2015
Proc. of International Conference on Clean Electrical Power (ICCEP), 2015
978-1-4799-8704-7
978-1-4799-8704-7
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3163757
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact