In this paper, we consider data muling over a network of fixed sensors by employing a mobile Autonomous Underwater Vehicle (AUV). We approach the problem using both acoustic and optical communications together in a multi-modal hybrid network: the most appropriate physical layer is chosen according to the quality of the transmissions that take place over time. We consider three distinct cases of water type: clear, coastal and turbid water, in order to test the system behavior under different conditions. The ambient light noise is realistically reproduced via the Hydrolight software and taken into account, due to its important contribution to the optical SNR in shallow waters. Finally, we simulate the performance of the system using the DESERT Underwater framework during missions of interest in different channel conditions and network depth. Our results show the effectiveness of a multi-modal underwater network in the cases of clear and coastal waters.

Simulation of multimodal optical and acoustic communications in underwater networks

CAMPAGNARO, FILIPPO;FAVARO, FEDERICO;GUERRA, FEDERICO;ZORZI, MICHELE;CASARI, PAOLO
2015

Abstract

In this paper, we consider data muling over a network of fixed sensors by employing a mobile Autonomous Underwater Vehicle (AUV). We approach the problem using both acoustic and optical communications together in a multi-modal hybrid network: the most appropriate physical layer is chosen according to the quality of the transmissions that take place over time. We consider three distinct cases of water type: clear, coastal and turbid water, in order to test the system behavior under different conditions. The ambient light noise is realistically reproduced via the Hydrolight software and taken into account, due to its important contribution to the optical SNR in shallow waters. Finally, we simulate the performance of the system using the DESERT Underwater framework during missions of interest in different channel conditions and network depth. Our results show the effectiveness of a multi-modal underwater network in the cases of clear and coastal waters.
2015
MTS/IEEE OCEANS 2015 - Genova: Discovering Sustainable Ocean Energy for a New World
9781479987368
9781479987368
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3181933
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 8
social impact