The work presents the development of new algorithms for calculating the fraction of thermal energy dissipated during the irradiation on the inner surface of pores. On the basis of these algorithms, the simulation of heat transfer in three-layered systems was carried out taking into account the dissipation of thermal energy in specimens having different porosity. We have performed quantitative estimates of the portion of dissipating thermal energy and its influence on the distribution of thermal stresses in thermal barrier coating systems. It was demonstrated that the presence of pores with a large internal surface area in the intermediate layer material enables two-fold decrease of the internal thermal stresses.
Behavior of nanoporous thermal barrier coatings under cyclic thermal loading. Computer-aided simulation
BERTO, FILIPPO
2015
Abstract
The work presents the development of new algorithms for calculating the fraction of thermal energy dissipated during the irradiation on the inner surface of pores. On the basis of these algorithms, the simulation of heat transfer in three-layered systems was carried out taking into account the dissipation of thermal energy in specimens having different porosity. We have performed quantitative estimates of the portion of dissipating thermal energy and its influence on the distribution of thermal stresses in thermal barrier coating systems. It was demonstrated that the presence of pores with a large internal surface area in the intermediate layer material enables two-fold decrease of the internal thermal stresses.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




