Measurement-based timing analysis (MBTA) is often used to determine the timing behaviour of software programs embedded in safety-aware real-time systems deployed in various industrial domains including automotive and railway. MBTA methods rely on some form of instrumentation, either at hardware or software level, of the target program or fragments thereof to collect execution-time measurement data. A known drawback of software-level instrumentation is that instrumentation itself does affect the timing and functional behaviour of a program, resulting in the so-called probe effect: leaving the instrumentation code in the final executable can negatively affect average performance and could not be even admissible under stringent industrial qualification and certification standards; removing it before operation jeopardizes the results of timing analysis as the WCET estimates on the instrumented version of the program cannot be valid any more due, for example, to the timing effects incurred by different cache alignments. In this paper, we present a novel approach to mitigate the impact of instrumentation code on cache behaviour by reducing the instrumentation overhead while at the same time preserving and consolidating the results of timing analysis.

Mitigating software-instrumentation cache effects in measurement-based timing analysis

VARDANEGA, TULLIO
Supervision
;
2016

Abstract

Measurement-based timing analysis (MBTA) is often used to determine the timing behaviour of software programs embedded in safety-aware real-time systems deployed in various industrial domains including automotive and railway. MBTA methods rely on some form of instrumentation, either at hardware or software level, of the target program or fragments thereof to collect execution-time measurement data. A known drawback of software-level instrumentation is that instrumentation itself does affect the timing and functional behaviour of a program, resulting in the so-called probe effect: leaving the instrumentation code in the final executable can negatively affect average performance and could not be even admissible under stringent industrial qualification and certification standards; removing it before operation jeopardizes the results of timing analysis as the WCET estimates on the instrumented version of the program cannot be valid any more due, for example, to the timing effects incurred by different cache alignments. In this paper, we present a novel approach to mitigate the impact of instrumentation code on cache behaviour by reducing the instrumentation overhead while at the same time preserving and consolidating the results of timing analysis.
2016
OpenAccess Series in Informatics
9783959770255
9783959770255
File in questo prodotto:
File Dimensione Formato  
OASIcs-WCET-2016-1.pdf

accesso aperto

Descrizione: Articolo completo
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 687.27 kB
Formato Adobe PDF
687.27 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3218750
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact